Bypassing LLVM for this has a number of benefits:
1) Laziness support becomes asm-syntax agnostic (previously lazy jitting didn't
work on Windows as the resolver block was in Darwin asm).
2) For cross-process JITs, it allows resolver blocks and trampolines to be
emitted directly in the target process, reducing cross process traffic.
3) It should be marginally faster.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251933 91177308-0d34-0410-b5e6-96231b3b80d8
than a pre-allocated slab of stubs. Also add a convenience method for creating a
single stub, rather than a whole block a time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251658 91177308-0d34-0410-b5e6-96231b3b80d8
Orc unit tests that execute code shouldn't run if the compiler doesn't have
target support for the host machine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251551 91177308-0d34-0410-b5e6-96231b3b80d8
was causing builder failures.
The bindings were originally added in r251472, and reverted in r251473 due to
the builder failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251482 91177308-0d34-0410-b5e6-96231b3b80d8
with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247167 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r241962, as it was breaking all ARM buildbots.
It also reverts the two subsequent related commits:
r241974: "[ExecutionEngine] Add a static cast to the unittest for r241962 to suppress a warning."
r241973: "[ExecutionEngine] Remove cruft and fix a couple of warnings in the test case for r241962."
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241983 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is a utility for clients that want to insert a layer that modifies
each ObjectFile and then passes it along to the next layer.
Reviewers: lhames
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10456
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240640 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This adds FindGlobalVariableNamed to ExecutionEngine
(plus implementation in MCJIT), which is an analog of
FindFunctionNamed for GlobalVariables.
Reviewers: lhames
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10421
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240202 91177308-0d34-0410-b5e6-96231b3b80d8
the function body.
This is necessary for correctness when lazily compiling.
Also, flesh out the Orc unit test infrastructure slightly, and add a unit test
for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235347 91177308-0d34-0410-b5e6-96231b3b80d8
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234679 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes MCJIT::addGlobalMapping by changing the implementation of the
ExecutionEngineState class. The new implementation maintains a bidirectional
mapping between symbol names (std::strings) and addresses (uint64_ts), rather
than a mapping between Value*s and void*s.
This has fix has been made for backwards compatibility, however the strongly
preferred way to resolve unknown symbols is by writing a custom
RuntimeDyld::SymbolResolver (formerly RTDyldMemoryManager) and overriding the
findSymbol method. The addGlobalMapping method is a hangover from the legacy JIT
(which has was removed in 3.6), and may be deprecated in a future release as
part of a clean-up of the ExecutionEngine interface.
Patch by Murat Bolat. Thanks Murat!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233747 91177308-0d34-0410-b5e6-96231b3b80d8
MCJIT.
This patch decouples the two responsibilities of the RTDyldMemoryManager class,
memory management and symbol resolution, into two new classes:
RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver.
The symbol resolution interface is modified slightly, from:
uint64_t getSymbolAddress(const std::string &Name);
to:
RuntimeDyld::SymbolInfo findSymbol(const std::string &Name);
The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld
and others to reason about non-strong/non-exported symbols.
The memory management interface removes the following method:
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &) {}
as it is not related to memory management. (Note: Backwards compatibility *is*
maintained for this method in MCJIT and OrcMCJITReplacement, see below).
The RTDyldMemoryManager class remains in-tree for backwards compatibility.
It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from
RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which
just subclasses RuntimeDyld::MemoryManager and reintroduces the
notifyObjectLoaded method for backwards compatibility).
The EngineBuilder class retains the existing method:
EngineBuilder&
setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
and includes two new methods:
EngineBuilder&
setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
EngineBuilder&
setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR);
Clients should use EITHER:
A single call to setMCJITMemoryManager with an RTDyldMemoryManager.
OR (exclusive)
One call each to each of setMemoryManager and setSymbolResolver.
This patch should be fully compatible with existing uses of RTDyldMemoryManager.
If it is not it should be considered a bug, and the patch either fixed or
reverted.
If clients find the new API to be an improvement the goal will be to deprecate
and eventually remove the RTDyldMemoryManager class in favor of the new classes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233509 91177308-0d34-0410-b5e6-96231b3b80d8
I made my best guess at the Makefile, since I don't have a make build.
I'm not sure if it should be valid to add an empty list of things, but
it seemed the sort of degenerate case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230196 91177308-0d34-0410-b5e6-96231b3b80d8
This has wider implications than I expected when I reviewed the patch: It can
cause JIT crashes where clients have used the default value for AbortOnFailure
during symbol lookup. I'm currently investigating alternative approaches and I
hope to have this back in tree soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227287 91177308-0d34-0410-b5e6-96231b3b80d8