perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116334 91177308-0d34-0410-b5e6-96231b3b80d8
LiveInterval::MergeValueNumberInto instead of trying to extend LiveRanges and
getting it wrong.
This fixed PR8249 where a valno with a multi-segment live range was defined by
an identity copy created by RemoveCopyByCommutingDef. Some of the live
segments disappeared.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115385 91177308-0d34-0410-b5e6-96231b3b80d8
This caused a miscompilation in WebKit where %RAX had conflicting defs when
RemoveCopyByCommutingDef was commuting a %EAX use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112751 91177308-0d34-0410-b5e6-96231b3b80d8
Eventually, we want to disable physreg coalescing completely, and let the
register allocator do its job using hints.
This option makes it possible to measure the impact of disabling physreg
coalescing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112567 91177308-0d34-0410-b5e6-96231b3b80d8
register at a time. This turns out to be slightly faster than iterating over
instructions, but more importantly, it allows us to compute spill weights for
new registers created after the spill weight pass has run.
Also compute the allocation hint at the same time as the spill weight. This
allows us to use the spill weight as a cost metric for copies, and choose the
most profitable hint if there is more than one possibility.
The new hints provide a very small (< 0.1%) but universal code size improvement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110631 91177308-0d34-0410-b5e6-96231b3b80d8
When a joined COPY changes subreg liveness, we keep it around as a KILL,
otherwise it is safe to delete.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110403 91177308-0d34-0410-b5e6-96231b3b80d8
EXTRACT_SUBREG no longer appears as a machine instruction. Use COPY instead.
Add isCopy() checks in many places using isMoveInstr() and isExtractSubreg().
The isMoveInstr hook will be removed later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107879 91177308-0d34-0410-b5e6-96231b3b80d8
It is OK for an alias live range to overlap if there is a copy to or from the
physical register. CoalescerPair can work out if the copy is coalescable
independently of the alias.
This means that we can join with the actual destination interval instead of
using the getOrigDstReg() hack. It is no longer necessary to merge clobber
ranges into subregisters.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107695 91177308-0d34-0410-b5e6-96231b3b80d8
This code is transitional, it will soon be possible to eliminate
isExtractSubreg, isInsertSubreg, and isMoveInstr in most places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107547 91177308-0d34-0410-b5e6-96231b3b80d8
The VNInfo.kills vector was almost unused except for all the code keeping it
updated. The few places using it were easily rewritten to check for interval
ends instead.
The two new methods LiveInterval::killedAt and killedInRange are replacements.
This brings us down to 3 independent data structures tracking kills.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106905 91177308-0d34-0410-b5e6-96231b3b80d8
are dead, not just the def of this register. I.e., a register could be dead, but
it's subreg isn't.
Testcase to follow with a subsequent patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106878 91177308-0d34-0410-b5e6-96231b3b80d8
CoalescerPair can determine if a copy can be coalesced, and which register gets
merged away. The old logic in SimpleRegisterCoalescing had evolved into
something a bit too convoluted.
This second attempt fixes some crashes that only occurred Linux.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106769 91177308-0d34-0410-b5e6-96231b3b80d8
CoalescerPair can determine if a copy can be coalesced, and which register gets
merged away. The old logic in SimpleRegisterCoalescing had evolved into
something a bit too convoluted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106701 91177308-0d34-0410-b5e6-96231b3b80d8
Measurements show that it does not speed up coalescing, so there is no reason
the keep the added complexity around.
Also clean out some unused methods and static functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106548 91177308-0d34-0410-b5e6-96231b3b80d8
SimpleRegisterCoalescing::JoinIntervals() uses CoalescerPair to determine if a
copy is coalescable, and in very rare cases it can return true where LHS is not
live - the coalescable copy can come from an alias of the physreg in LHS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106021 91177308-0d34-0410-b5e6-96231b3b80d8
Given a copy instruction, CoalescerPair can determine which registers to
coalesce in order to eliminate the copy. It deals with all the subreg fun to
determine a tuple (DstReg, SrcReg, SubIdx) such that:
- SrcReg is a virtual register that will disappear after coalescing.
- DstReg is a virtual or physical register whose live range will be extended.
- SubIdx is 0 when DstReg is a physical register.
- SrcReg can be joined with DstReg:SubIdx.
CoalescerPair::isCoalescable() determines if another copy instruction is
compatible with the same tuple. This fixes some NEON miscompilations where
shuffles are getting coalesced as if they were copies.
The CoalescerPair class will replace a lot of the spaghetti logic in JoinCopy
later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105997 91177308-0d34-0410-b5e6-96231b3b80d8
register updates.
These operands tell the spiller that the other parts of the partially defined
register are don't-care, and a reload is not necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105361 91177308-0d34-0410-b5e6-96231b3b80d8
instruction defines subregisters.
Any existing subreg indices on the original instruction are preserved or
composed with the new subreg index.
Also substitute multiple operands mentioning the original register by using the
new MachineInstr::substituteRegister() function. This is necessary because there
will soon be <imp-def> operands added to non read-modify-write partial
definitions. This instruction:
%reg1234:foo = FLAP %reg1234<imp-def>
will reMaterialize(%reg3333, bar) like this:
%reg3333:bar-foo = FLAP %reg333:bar<imp-def>
Finally, replace the TargetRegisterInfo pointer argument with a reference to
indicate that it cannot be NULL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105358 91177308-0d34-0410-b5e6-96231b3b80d8
The comment about ordering of subreg indices is no longer true.
This exposed a bug in the new substVirtReg method that is also fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105294 91177308-0d34-0410-b5e6-96231b3b80d8
that are aliases of the specified register.
- Rename modifiesRegister to definesRegister since it's looking a def of the
specific register or one of its super-registers. It's not looking for def of a
sub-register or alias that could change the specified register.
- Added modifiesRegister to look for defs of aliases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104377 91177308-0d34-0410-b5e6-96231b3b80d8