clang-format (https://reviews.llvm.org/D33932) to keep primary headers
at the top and handle new utility headers like 'gmock' consistently with
other utility headers.
No other change was made. I did no manual edits, all of this is
clang-format.
This should allow other changes to have more clear and focused diffs,
and is especially motivated by moving some headers into more focused
libraries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304786 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This problem stems from the fact that instructions are allocated using new
in LLVM, i.e. there is no relationship that can be derived by just looking
at the pointer value.
This interface dispatches to appropriate dominance check given 2 instructions,
i.e. in case the instructions are in the same basic block, ordered basicblock
(with instruction numbering and caching) are used. Otherwise, dominator tree
is used.
This is a preparation patch for https://reviews.llvm.org/D32720
Reviewers: dberlin, hfinkel, davide
Subscribers: davide, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D33380
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304764 91177308-0d34-0410-b5e6-96231b3b80d8
When parsing .mir files immediately construct the MachineFunctions and
put them into MachineModuleInfo.
This allows us to get rid of the delayed construction (and delayed error
reporting) through the MachineFunctionInitialzier interface.
Differential Revision: https://reviews.llvm.org/D33809
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304758 91177308-0d34-0410-b5e6-96231b3b80d8
This removes a quadratic behavior in assert-enabled builds.
GVN propagates the equivalence from a condition into the blocks guarded by the
condition. E.g. for 'if (a == 7) { ... }', 'a' will be replaced in the block
with 7. It does this by replacing all the uses of 'a' that are dominated by
the true edge.
For a switch with N cases and U uses of the value, this will mean N * U calls
to 'dominates'. Asserting isSingleEdge in 'dominates' make this N^2 * U
because this function checks for the uniqueness of the edge. I.e. traverses
each edge between the SwitchInst's block and the cases.
The change removes the assert and makes 'dominates' works correctly in the
presence of non-unique edges.
This brings build time down by an order of magnitude for an input that has
~10k cases in a switch statement.
Differential Revision: https://reviews.llvm.org/D33584
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304721 91177308-0d34-0410-b5e6-96231b3b80d8
Previously MappedBlockStream owned its own BumpPtrAllocator that
it would allocate from when a read crossed a block boundary. This
way it could still return the user a contiguous buffer of the
requested size. However, It's not uncommon to open a stream, read
some stuff, close it, and then save the information for later.
After all, since the entire file is mapped into memory, the data
should always be available as long as the file is open.
Of course, the exception to this is when the data isn't *in* the
file, but rather in some buffer that we temporarily allocated to
present this contiguous view. And this buffer would get destroyed
as soon as the strema was closed.
The fix here is to force the user to specify the allocator, this
way it can provide an allocator that has whatever lifetime it
chooses.
Differential Revision: https://reviews.llvm.org/D33858
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304623 91177308-0d34-0410-b5e6-96231b3b80d8
This might give a few better opportunities to optimize these to memcpy
rather than loops - also a few minor cleanups (StringRef-izing,
templating (to avoid std::function indirection), etc).
The SmallVector::assign(iter, iter) could be improved with the use of
SFINAE, but the (iter, iter) ctor and append(iter, iter) need it to and
don't have it - so, workaround it for now rather than bothering with the
added complexity.
(also, as noted in the added FIXME, these assign ops could potentially
be optimized better at least for non-trivially-copyable types)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304566 91177308-0d34-0410-b5e6-96231b3b80d8
This was rL304226, reverted in 304228 due to a clang assertion failure
on the build bots. That problem should have been addressed by clang
commit rL304470.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304488 91177308-0d34-0410-b5e6-96231b3b80d8
The intent of the test is to check that array lengths greater than
UINT_MAX work properly. Change the test to stress that scenario, without
triggering pointer overflow UB.
Caught by a WIP pointer overflow checker in clang.
Differential Revision: https://reviews.llvm.org/D33149
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304353 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In rL302576, DISubprograms gained the constraint that a !dbg attachments to functions must
have a 1:1 mapping to DISubprograms. As part of that change, the function cloning support
was adjusted to attempt to enforce this invariant during cloning. However, there
were several problems with the implementation. Part of these were fixed in rL304079.
However, there was a more fundamental problem with these changes, namely that it
bypasses the matadata value map, causing the cloned metadata to be a mix of metadata
pointing to the new suprogram (where manual code was added to fix those up) and the
old suprogram (where this was not the case). This mismatch could cause a number of
different assertion failures in the DWARF emitter. Some of these are given at
https://github.com/JuliaLang/julia/issues/22069, but some others have been observed
as well. Attempt to rectify this by partially reverting the manual DI metadata fixup,
and instead using the standard value map approach. To retain the desired semantics
of not duplicating the compilation unit and inlined subprograms, explicitly freeze
these in the value map.
Reviewers: dblaikie, aprantl, GorNishanov, echristo
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33655
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304226 91177308-0d34-0410-b5e6-96231b3b80d8
This is super awkward, but GCC doesn't let us have template visible when
an argument is an inline function and -fvisibility-inlines-hidden is
used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304175 91177308-0d34-0410-b5e6-96231b3b80d8
Turns out this is very hostile towards other unit tests running in the
same process, it unregisters all flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304165 91177308-0d34-0410-b5e6-96231b3b80d8
error C2971: 'llvm::ManagedStatic': template parameter 'Creator': 'CreateDefaultTimerGroup': a variable with non-static storage duration cannot be used as a non-type argument
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304157 91177308-0d34-0410-b5e6-96231b3b80d8
With fix of uninitialized variable.
Original commit message:
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses with use of llvm::LoadedObjectInfo
interface. We assigned file offsets as addressed. Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well. That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304078 91177308-0d34-0410-b5e6-96231b3b80d8
I've taken the approach from the LoopInfo test:
* Rather than running in the pass manager just build the analyses manually
* Split out the common parts (makeLLVMModule, runWithDomTree) into helpers
Differential Revision: https://reviews.llvm.org/D33617
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304061 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This fixes introduction of an incorrect inttoptr/ptrtoint pair in
the included test case which makes use of non-integral pointers. I
suspect there are more cases like this left, but this takes care of
the one I was seeing at the moment.
Reviewers: sanjoy
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D33129
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304058 91177308-0d34-0410-b5e6-96231b3b80d8
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses with use of llvm::LoadedObjectInfo
interface. We assigned file offsets as addressed. Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well. That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304002 91177308-0d34-0410-b5e6-96231b3b80d8
With fix of test compilation.
Initial commit message:
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section
which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses
with use of llvm::LoadedObjectInfo interface. We assigned file offsets as addressed.
Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason
of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well.
That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303983 91177308-0d34-0410-b5e6-96231b3b80d8
Running unittests/Support/DynamicLibrary/DynamicLibraryTests fails when LLVM is
configured with LLVM_EXPORT_SYMBOLS_FOR_PLUGINS=ON, because the test's version
script only contains symbols extracted from the static libraries, that the test
links with, but not those from the main object/executable itself. The patch
explicitly exports the one symbol needed by the test.
This change fixes https://bugs.llvm.org/show_bug.cgi?id=32893
Patch authored by Momchil Velikov.
Differential Revision: https://reviews.llvm.org/D33490
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303979 91177308-0d34-0410-b5e6-96231b3b80d8
block.
This allows writing much more natural and readable range based for loops
directly over the PHI nodes. It also takes advantage of the same tricks
for terminating the sequence as the hand coded versions.
I've replaced one example of this mostly to showcase the difference and
I've added a unit test to make sure the facilities really work the way
they're intended. I want to use this inside of SimpleLoopUnswitch but it
seems generally nice.
Differential Revision: https://reviews.llvm.org/D33533
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303964 91177308-0d34-0410-b5e6-96231b3b80d8
Merging two type streams is one of the most time consuming
parts of generating a PDB, and as such it needs to be as
fast as possible. The visitor abstractions used for interoperating
nicely with many different types of inputs and outputs have
been used widely and help greatly for testability and implementing
tools, but the abstractions build up and get in the way of
performance.
This patch removes all of the visitation stuff from the type
stream merger, essentially re-inventing the leaf / member switch
and loop, but at a very low level. This allows us many other
optimizations, such as not actually deserializing *any* records
(even member records which don't describe their own length), as
the operation of "figure out how long this record is" is somewhat
faster than "figure out how long this record *and* get all its
fields out". Furthermore, whereas before we had to deserialize,
re-write type indices, then re-serialize, now we don't have to
do any of those 3 steps. We just find out where the type indices
are and pull them directly out of the byte stream and re-write
them.
This is worth a 50-60% performance increase. On top of all other
optimizations that have been applied this week, I now get the
following numbers when linking lld.exe and lld.pdb
MSVC: 25.67s
Before This Patch: 18.59s
After This Patch: 8.92s
So this is a huge performance win.
Differential Revision: https://reviews.llvm.org/D33564
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303935 91177308-0d34-0410-b5e6-96231b3b80d8
It was using the number of blocks of the entire PDB file as the number
of blocks of each stream that was created. This was only an issue in
the readLongestContiguousChunk function, which was never called prior.
This bug surfaced when I updated an algorithm to use this function and
the algorithm broke.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303916 91177308-0d34-0410-b5e6-96231b3b80d8