object, as it may still be referenced by SCEVs not cleaned up by the
use list traversal.
Also, in ScalarEvolution::forgetValue, only check for a SCEVUnknown
object for the original value, not for any value in the use list,
because other SCEVUnknown values aren't necessary obsolete at that
point.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109570 91177308-0d34-0410-b5e6-96231b3b80d8
add instead a CallSite(Value* V) constructor that is consistent with ImmutableCallSize
and use that one in client code
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109553 91177308-0d34-0410-b5e6-96231b3b80d8
are still on the list. This might happen if a CallbackVH created some new value
handles for the old value when doing RAUW. Barf if it occurs, since it is almost
certainly a mistake.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109495 91177308-0d34-0410-b5e6-96231b3b80d8
* contains(Loop), * getOutermostLoop()
* Improve getNameStr() to return a sensible name, if basic blocks are not named.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109490 91177308-0d34-0410-b5e6-96231b3b80d8
subregister operands like this:
%reg1040:sub_32bit<def> = MOV32rm <fi#-2>, 1, %reg0, 0, %reg0, %reg1040<imp-def>; mem:LD4[FixedStack-2](align=8)
Make them return false when subreg operands are present. VirtRegRewriter is
making bad assumptions otherwise.
This fixes PR7713.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109489 91177308-0d34-0410-b5e6-96231b3b80d8
protectors, to be near the stack protectors on the stack. Accomplish this by
tagging the stack object with a predicate that indicates that it would trigger
this. In the prolog-epilog inserter, assign these objects to the stack after the
stack protector but before the other objects.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109481 91177308-0d34-0410-b5e6-96231b3b80d8
exception handling. Also fix an extra underscore typo in one instance of
"__ARM_EABI__". Radar 8236264.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109451 91177308-0d34-0410-b5e6-96231b3b80d8
we are using AVX and no AVX version of the desired intruction is present,
this is better for incremental dev (without fallbacks it's easier to spot
what's missing). Not sure this is the best hack thought (we can also disable
all HasSSE* predicates by dinamically marking them 'false' if AVX is present)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109434 91177308-0d34-0410-b5e6-96231b3b80d8
This assumption is not satisfied due to global mergeing.
Workaround the issue by temporary disablinge mergeing of const globals.
Also, ignore LLVM "special" globals. This fixes PR7716
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109423 91177308-0d34-0410-b5e6-96231b3b80d8
it inserted rather than using LoopInfo::getCanonicalInductionVariable to
rediscover it, since that doesn't work on non-canonical loops. This fixes
infinite recurrsion on such loops; PR7562.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109419 91177308-0d34-0410-b5e6-96231b3b80d8
dependence on DominanceFrontier. Instead, add an explicit DominanceFrontier
pass in StandardPasses.h to ensure that it gets scheduled at the right
time.
Declare that loop unrolling preserves ScalarEvolution, and shuffle some
getAnalysisUsages.
This eliminates one LoopSimplify and one LCCSA run in the standard
compile opts sequence.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109413 91177308-0d34-0410-b5e6-96231b3b80d8
don't visit all blocks in the function, and don't iterate over the split blocks'
predecessor lists for each block visited.
Also, remove the special-case test for the entry block. Splitting the entry
block isn't common enough to make this worthwhile.
This fixes a major compile-time bottleneck which is exposed now that
LoopSimplify isn't being redundantly run both before and after
DominanceFrontier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109408 91177308-0d34-0410-b5e6-96231b3b80d8