uses of the vreg, since the old kills may no longer be valid. This was causing
-verify-machineinstrs to complain about uses after kills, and could potentially
have been causing subtle register allocation issues, but I haven't come across a
test case yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151425 91177308-0d34-0410-b5e6-96231b3b80d8
Moving toward a uniform style of pass definition to allow easier target configuration.
Globally declare Pass ID.
Globally declare pass initializer.
Use INITIALIZE_PASS consistently.
Add a call to the initializer from CodeGen.cpp.
Remove redundant "createPass" functions and "getPassName" methods.
While cleaning up declarations, cleaned up comments (sorry for large diff).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150100 91177308-0d34-0410-b5e6-96231b3b80d8
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146026 91177308-0d34-0410-b5e6-96231b3b80d8
have the same address as the one we deleted, and we don't want that in the set
yet. Noticed by inspection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141849 91177308-0d34-0410-b5e6-96231b3b80d8
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134021 91177308-0d34-0410-b5e6-96231b3b80d8
v2 = bitcast v1
...
v3 = bitcast v2
...
= v3
=>
v2 = bitcast v1
...
= v1
if v1 and v3 are of in the same register class.
bitcast between i32 and fp (and others) are often not nops since they
are in different register classes. These bitcast instructions are often
left because they are in different basic blocks and cannot be
eliminated by dag combine.
rdar://9104514
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127668 91177308-0d34-0410-b5e6-96231b3b80d8
These functions not longer assert when passed 0, but simply return false instead.
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123155 91177308-0d34-0410-b5e6-96231b3b80d8
Instead encode llvm IR level property "HasSideEffects" in an operand (shared
with IsAlignStack). Added MachineInstrs::hasUnmodeledSideEffects() to check
the operand when the instruction is an INLINEASM.
This allows memory instructions to be moved around INLINEASM instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123044 91177308-0d34-0410-b5e6-96231b3b80d8
and xor. The 32-bit move immediates can be hoisted out of loops by machine
LICM but the isel hacks were preventing them.
Instead, let peephole optimization pass recognize registers that are defined by
immediates and the ARM target hook will fold the immediates in.
Other changes include 1) do not fold and / xor into cmp to isel TST / TEQ
instructions if there are multiple uses. This happens when the 'and' is live
out, machine sink would have sinked the computation and that ends up pessimizing
code. The peephole pass would recognize situations where the 'and' can be
toggled to define CPSR and eliminate the comparison anyway.
2) Move peephole pass to after machine LICM, sink, and CSE to avoid blocking
important optimizations.
rdar://8663787, rdar://8241368
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119548 91177308-0d34-0410-b5e6-96231b3b80d8
at more than those which define CPSR. You can have this situation:
(1) subs ...
(2) sub r6, r5, r4
(3) movge ...
(4) cmp r6, 0
(5) movge ...
We cannot convert (2) to "subs" because (3) is using the CPSR set by
(1). There's an analogous situation here:
(1) sub r1, r2, r3
(2) sub r4, r5, r6
(3) cmp r4, ...
(5) movge ...
(6) cmp r1, ...
(7) movge ...
We cannot convert (1) to "subs" because of the intervening use of CPSR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117950 91177308-0d34-0410-b5e6-96231b3b80d8
looks like is happening:
Without the peephole optimizer:
(1) sub r6, r6, #32
orr r12, r12, lr, lsl r9
orr r2, r2, r3, lsl r10
(x) cmp r6, #0
ldr r9, LCPI2_10
ldr r10, LCPI2_11
(2) sub r8, r8, #32
(a) movge r12, lr, lsr r6
(y) cmp r8, #0
LPC2_10:
ldr lr, [pc, r10]
(b) movge r2, r3, lsr r8
With the peephole optimizer:
ldr r9, LCPI2_10
ldr r10, LCPI2_11
(1*) subs r6, r6, #32
(2*) subs r8, r8, #32
(a*) movge r12, lr, lsr r6
(b*) movge r2, r3, lsr r8
(1) is used by (x) for the conditional move at (a). (2) is used by (y) for the
conditional move at (b). After the peephole optimizer, these the flags resulting
from (1*) are ignored and only the flags from (2*) are considered for both
conditional moves.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117876 91177308-0d34-0410-b5e6-96231b3b80d8
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116820 91177308-0d34-0410-b5e6-96231b3b80d8
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116334 91177308-0d34-0410-b5e6-96231b3b80d8
into OptimizeCompareInstr.
This necessitates the passing of CmpValue around,
so widen the virtual functions to accomodate.
No functionality changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114428 91177308-0d34-0410-b5e6-96231b3b80d8
the 'zero' bit down into the back-end. There are other cases where this logic
isn't sufficient, so they should be handled separately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113665 91177308-0d34-0410-b5e6-96231b3b80d8
iterator when an optimization took place. This allows us to do more insane
things with the code than just remove an instruction or two.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113640 91177308-0d34-0410-b5e6-96231b3b80d8
pass. This pass should expand with all of the small, fine-grained optimization
passes to reduce compile time and increase happiment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110627 91177308-0d34-0410-b5e6-96231b3b80d8