The library call simplifier folds memcmp calls with all constant arguments
to a constant. For example:
memcmp("foo", "foo", 3) -> 0
memcmp("hel", "foo", 3) -> 1
memcmp("foo", "hel", 3) -> -1
The folding is implemented in terms of the system memcmp that LLVM gets
linked with. It currently just blindly uses the value returned from
the system memcmp as the folded constant.
This patch normalizes the values returned from the system memcmp to
(-1, 0, 1) so that we get consistent results across multiple platforms.
The test cases were adjusted accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167726 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the memset optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167689 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the memmove optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167687 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the memcpy optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167686 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the memcmp optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167683 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strstr optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167682 91177308-0d34-0410-b5e6-96231b3b80d8
In some cases the library call simplifier may need to replace instructions
other than the library call being simplified. In those cases it may be
necessary for clients of the simplifier to override how the replacements
are actually done. As such, a new overrideable method for replacing
instructions was added to LibCallSimplifier.
A new subclass of LibCallSimplifier is also defined which overrides
the instruction replacement method. This is because the instruction
combiner defines its own replacement method which updates the worklist
when instructions are replaced.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167681 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strcspn optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167675 91177308-0d34-0410-b5e6-96231b3b80d8
Several of the simplifiers migrated from the simplify-libcalls pass to
the instcombine pass were not correctly checking the target library
information to gate the simplifications. This patch ensures that the
check is made.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167660 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strspn optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167568 91177308-0d34-0410-b5e6-96231b3b80d8
r165941: Resubmit the changes to llvm core to update the functions to
support different pointer sizes on a per address space basis.
Despite this commit log, this change primarily changed stuff outside of
VMCore, and those changes do not carry any tests for correctness (or
even plausibility), and we have consistently found questionable or flat
out incorrect cases in these changes. Most of them are probably correct,
but we need to devise a system that makes it more clear when we have
handled the address space concerns correctly, and ideally each pass that
gets updated would receive an accompanying test case that exercises that
pass specificaly w.r.t. alternate address spaces.
However, from this commit, I have retained the new C API entry points.
Those were an orthogonal change that probably should have been split
apart, but they seem entirely good.
In several places the changes were very obvious cleanups with no actual
multiple address space code added; these I have not reverted when
I spotted them.
In a few other places there were merge conflicts due to a cleaner
solution being implemented later, often not using address spaces at all.
In those cases, I've preserved the new code which isn't address space
dependent.
This is part of my ongoing effort to clean out the partial address space
code which carries high risk and low test coverage, and not likely to be
finished before the 3.2 release looms closer. Duncan and I would both
like to see the above issues addressed before we return to these
changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167222 91177308-0d34-0410-b5e6-96231b3b80d8
getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.
These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.
Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)
After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.
Summary of reverted revisions:
r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
on the address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
- Use value handle tricks to communicate use replacements instead of forgetLoop, this is a lot faster.
- Move the "big hammer" out of the main loop so it's not called for every instruction.
This should recover most (if not all) compile time regressions introduced by this code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167136 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strto* optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167119 91177308-0d34-0410-b5e6-96231b3b80d8
By propagating the value for the switch condition, LLVM can now build
lookup tables for code such as:
switch (x) {
case 1: return 5;
case 2: return 42;
case 3: case 4: case 5:
return x - 123;
default:
return 123;
}
Given that x is known for each case, "x - 123" becomes a constant for
cases 3, 4, and 5.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167115 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strpbrk optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167105 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strlen optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167103 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strncpy optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167102 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the stpcpy optimizations from the simplify-libcalls
pass into the instcombine library call simplifier. Note that the
__stpcpy_chk simplifications were migrated in a previous commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167083 91177308-0d34-0410-b5e6-96231b3b80d8
r166198 migrated the strcpy optimization to instcombine. The strcpy
simplifier that was migrated from Transforms/Scalar/SimplifyLibCalls.cpp
was also doing some __strcpy_chk simplifications. Those fortified
simplifications were migrated as well, but introduced a bug in the
__stpcpy_chk simplifier in the process. This happened because the
__strcpy_chk and __stpcpy_chk simplifiers were both mapped to StrCpyChkOpt
which was updated with simplifications that worked for __strcpy_chk, but
not __stpcpy_chk.
This patch fixes the problem by adding proper test coverage and creating a
new simplifier for __stpcpy_chk (instead of sharing one with __strcpy_chk).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167082 91177308-0d34-0410-b5e6-96231b3b80d8
When the switch-to-lookup tables transform landed in SimplifyCFG, it
was pointed out that this could be inappropriate for some targets.
Since there was no way at the time for the pass to know anything about
the target, an awkward reverse-transform was added in CodeGenPrepare
that turned lookup tables back into switches for some targets.
This patch uses the new TargetTransformInfo to determine if a
switch should be transformed, and removes
CodeGenPrepare::ConvertLoadToSwitch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167011 91177308-0d34-0410-b5e6-96231b3b80d8
wrapper returns a vector of integers when passed a vector of pointers) by having
getIntPtrType itself return a vector of integers in this case. Outside of this
wrapper, I didn't find anywhere in the codebase that was relying on the old
behaviour for vectors of pointers, so give this a whirl through the buildbots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166939 91177308-0d34-0410-b5e6-96231b3b80d8
This is currently true, but may change when DA grows more aggressive caching.
Without this setting it's impossible to use DA from a LoopPass because DA is a
function pass and cannot be properly scheduled in between LoopPasses. The
LoopManager reacts to this with an infinite loop which made this really annoying
to debug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166788 91177308-0d34-0410-b5e6-96231b3b80d8
The LoopSimplify bug is pretty harmless because the loop goes from unanalyzable
to analyzable but the LCSSA bug is very nasty. It only comes into play with a
specific order of the LoopPassManager worklist and can cause actual
miscompilations, when a SCEV refers to a value that has been replaced with PHI
node. SCEVExpander may then insert code into the wrong place, either violating
domination or randomly miscompiling stuff.
Comes with an extensive test case reduced from the test-suite with
bugpoint+SCEVValidator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166787 91177308-0d34-0410-b5e6-96231b3b80d8
The isValueEqualityComparison() guard at the top of SimplifySwitch()
only applies to some of the possible transformations.
The newer transformations work just fine on large switches, and the
check on predecessor count is nonsensical.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166710 91177308-0d34-0410-b5e6-96231b3b80d8
deterministic, replace it with a DenseMap<std::pair<unsigned, unsigned>,
PHINode*> (we already have a map from BasicBlock to unsigned).
<rdar://problem/12541389>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166435 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strcpy optimizations from the simplify-libcalls pass
into the instcombine library call simplifier. Note also that StrCpyChkOpt
has been updated with a few simplifications that were being done in the
simplify-libcalls version of StrCpyOpt, but not in the migrated implementation
of StrCpyOpt. There is no reason to overload StrCpyOpt with fortified and
regular simplifications in the new model since there is already a dedicated
simplifier for __strcpy_chk.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166198 91177308-0d34-0410-b5e6-96231b3b80d8
The TargetTransform changes are breaking LTO bootstraps of clang. I am
working with Nadav to figure out the problem, but I am reverting it for now
to get our buildbots working.
This reverts svn commits: 165665 165669 165670 165786 165787 165997
and I have also reverted clang svn 165741
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166168 91177308-0d34-0410-b5e6-96231b3b80d8
Convert the internal representation of the Attributes class into a pointer to an
opaque object that's uniqued by and stored in the LLVMContext object. The
Attributes class then becomes a thin wrapper around this opaque
object. Eventually, the internal representation will be expanded to include
attributes that represent code generation options, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165917 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strcmp and strncmp optimizations from the
simplify-libcalls pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165915 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strchr and strrchr optimizations from the
simplify-libcalls pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165875 91177308-0d34-0410-b5e6-96231b3b80d8
This patch migrates the strcat and strncat optimizations from the
simplify-libcalls pass into the instcombine library call simplifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165874 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements the new LibCallSimplifier class as outlined in [1].
In addition to providing the new base library simplification infrastructure,
all the fortified library call simplifications were moved over to the new
infrastructure. The rest of the library simplification optimizations will
be moved over with follow up patches.
NOTE: The original fortified library call simplifier located in the
SimplifyFortifiedLibCalls class was not removed because it is still
used by CodeGenPrepare. This class will eventually go away too.
[1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-August/052283.html
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165873 91177308-0d34-0410-b5e6-96231b3b80d8
When all cases of a switch statement are dead, the weights vector only has one
element, and we will get an ssertion failure when calling createBranchWeights.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165759 91177308-0d34-0410-b5e6-96231b3b80d8
We conservatively only check the first use to avoid walking long use chains.
This catches the common case of having both a load and a store to a pointer
supplied by a PHI node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165232 91177308-0d34-0410-b5e6-96231b3b80d8
instruction (for Intel Atom) was not being done by Clang, because
the type context used by Clang is not the default context.
It fixes the problem by getting the global context types for each div/rem
instruction in order to compare them against the types in the BypassTypeMap.
Tests for this will be done as a separate patch to Clang.
Patch by Tyler Nowicki.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165126 91177308-0d34-0410-b5e6-96231b3b80d8
If the width is very large it gets truncated from uint64_t to uint32_t when
passed to TD->fitsInLegalInteger. The truncated value can fit in a register.
This manifested in massive memory usage or crashes (PR13946).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164784 91177308-0d34-0410-b5e6-96231b3b80d8
- Put statistics in alphabetical order
- Don't use getZextValue when building TableInt, just use APInts
- Introduce Create{Z,S}ExtOrTrunc in IRBuilder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164696 91177308-0d34-0410-b5e6-96231b3b80d8
tables in bitmaps when they fit in a target-legal register.
This saves some space, and it also allows for building tables that would
otherwise be deemed too sparse.
One interesting case that this hits is example 7 from
http://blog.regehr.org/archives/320. We currently generate good code
for this when lowering the switch to the selection DAG: we build a
bitmask to decide whether to jump to one block or the other. My patch
will result in the same bitmask, but it removes the need for the jump,
as the return value can just be retrieved from the mask.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164684 91177308-0d34-0410-b5e6-96231b3b80d8
We already have HoistThenElseCodeToIf, this patch implements
SinkThenElseCodeToEnd. When END block has only two predecessors and each
predecessor terminates with unconditional branches, we compare instructions in
IF and ELSE blocks backwards and check whether we can sink the common
instructions down.
rdar://12191395
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164325 91177308-0d34-0410-b5e6-96231b3b80d8
two variables where the first variable is returned and the second
ignored.
I don't think this occurs in practice (other passes should have cleaned
up the unused phi node), but it should still be handled correctly.
Also make the logic for determining if we should return early less
sketchy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164225 91177308-0d34-0410-b5e6-96231b3b80d8
Hanlde the case when we split the default edge if the default target has "icmp"
and unconditinal branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164076 91177308-0d34-0410-b5e6-96231b3b80d8
destination.
Updated previous implementation to fix a case not covered:
// PBI: br i1 %x, TrueDest, BB
// BI: br i1 %y, TrueDest, FalseDest
The other case was handled correctly.
// PBI: br i1 %x, BB, FalseDest
// BI: br i1 %y, TrueDest, FalseDest
Also tried to use 64-bit arithmetic instead of APInt with scale to simplify the
computation. Let me know if you have other opinions about this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163954 91177308-0d34-0410-b5e6-96231b3b80d8
the default target of the first switch is not the basic block the second switch
is in (PredDefault != BB).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163916 91177308-0d34-0410-b5e6-96231b3b80d8
a pair of switch/branch where both depend on the value of the same variable and
the default case of the first switch/branch goes to the second switch/branch.
Code clean up and fixed a few issues:
1> handling the case where some cases of the 2nd switch are invalidated
2> correctly calculate the weight for the 2nd switch when it is a conditional eq
Testing case is modified from Alastair's original patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163635 91177308-0d34-0410-b5e6-96231b3b80d8
The lookup tables did not get built in a deterministic order.
This makes them get built in the order that the corresponding phi nodes
were found.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163305 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a transformation to SimplifyCFG that attemps to turn switch
instructions into loads from lookup tables. It works on switches that
are only used to initialize one or more phi nodes in a common successor
basic block, for example:
int f(int x) {
switch (x) {
case 0: return 5;
case 1: return 4;
case 2: return -2;
case 5: return 7;
case 6: return 9;
default: return 42;
}
This speeds up the code by removing the hard-to-predict jump, and
reduces code size by removing the code for the jump targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163302 91177308-0d34-0410-b5e6-96231b3b80d8
Also a few minor changes:
- use pre-inc instead of post-inc
- use isa instead of dyn_cast
- 80 col
- trailing spaces
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163164 91177308-0d34-0410-b5e6-96231b3b80d8
- CodeGenPrepare pass for identifying div/rem ops
- Backend specifies the type mapping using addBypassSlowDivType
- Enabled only for Intel Atom with O2 32-bit -> 8-bit
- Replace IDIV with instructions which test its value and use DIVB if the value
is positive and less than 256.
- In the case when the quotient and remainder of a divide are used a DIV
and a REM instruction will be present in the IR. In the non-Atom case
they are both lowered to IDIVs and CSE removes the redundant IDIV instruction,
using the quotient and remainder from the first IDIV. However,
due to this optimization CSE is not able to eliminate redundant
IDIV instructions because they are located in different basic blocks.
This is overcome by calculating both the quotient (DIV) and remainder (REM)
in each basic block that is inserted by the optimization and reusing the result
values when a subsequent DIV or REM instruction uses the same operands.
- Test cases check for the presents of the optimization when calculating
either the quotient, remainder, or both.
Patch by Tyler Nowicki!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163150 91177308-0d34-0410-b5e6-96231b3b80d8
This disables malloc-specific optimization when -fno-builtin (or -ffreestanding)
is specified. This has been a problem for a long time but became more severe
with the recent memory builtin improvements.
Since the memory builtin functions are used everywhere, this required passing
TLI in many places. This means that functions that now have an optional TLI
argument, like RecursivelyDeleteTriviallyDeadFunctions, won't remove dead
mallocs anymore if the TLI argument is missing. I've updated most passes to do
the right thing.
Fixes PR13694 and probably others.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162841 91177308-0d34-0410-b5e6-96231b3b80d8
may invalidate its AliasSet because SSAUpdater does not update the AliasSet properly.
This patch teaches SSAUpdater to notify AliasSet that it made changes.
The testcase in PR12901 is too big to be useful and I could not reduce it to a normal size.
rdar://11872059 PR12901
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161803 91177308-0d34-0410-b5e6-96231b3b80d8
IRBuilder, DIBuilder, etc.
This is the proper layering as MDBuilder can't be used (or implemented)
without the Core Metadata representation.
Patches to Clang and Dragonegg coming up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160237 91177308-0d34-0410-b5e6-96231b3b80d8
IntegersSubsetMapping
- Replaced type of Items field from std::list with std::map. In neares future I'll test it with DenseMap and do the correspond replacement
if possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159703 91177308-0d34-0410-b5e6-96231b3b80d8
IntegersSubsetMapping
- Replaced type of Items field from std::list with std::map. In neares future I'll test it with DenseMap and do the correspond replacement
if possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159659 91177308-0d34-0410-b5e6-96231b3b80d8
This was always part of the VMCore library out of necessity -- it deals
entirely in the IR. The .cpp file in fact was already part of the VMCore
library. This is just a mechanical move.
I've tried to go through and re-apply the coding standard's preferred
header sort, but at 40-ish files, I may have gotten some wrong. Please
let me know if so.
I'll be committing the corresponding updates to Clang and Polly, and
Duncan has DragonEgg.
Thanks to Bill and Eric for giving the green light for this bit of cleanup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159421 91177308-0d34-0410-b5e6-96231b3b80d8
include/llvm/Analysis/DebugInfo.h to include/llvm/DebugInfo.h.
The reasoning is because the DebugInfo module is simply an interface to the
debug info MDNodes and has nothing to do with analysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159312 91177308-0d34-0410-b5e6-96231b3b80d8
This allows the user/front-end to specify a model that is better
than what LLVM would choose by default. For example, a variable
might be declared as
@x = thread_local(initialexec) global i32 42
if it will not be used in a shared library that is dlopen'ed.
If the specified model isn't supported by the target, or if LLVM can
make a better choice, a different model may be used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159077 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
Performance optimizations:
- SwitchInst: case values stored separately from Operands List. It allows to make faster access to individual case value numbers or ranges.
- Optimized IntItem, added APInt value caching.
- Optimized IntegersSubsetGeneric: added optimizations for cases when subset is single number or when subset consists from single numbers only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158997 91177308-0d34-0410-b5e6-96231b3b80d8
- provide more extensive set of functions to detect library allocation functions (e.g., malloc, calloc, strdup, etc)
- provide an API to compute the size and offset of an object pointed by
Move a few clients (GVN, AA, instcombine, ...) to the new API.
This implementation is a lot more aggressive than each of the custom implementations being replaced.
Patch reviewed by Nick Lewycky and Chandler Carruth, thanks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158919 91177308-0d34-0410-b5e6-96231b3b80d8
I'll admit I'm not entirely satisfied with this change, but it seemed
the cleanest option. Other suggestions quite welcome
The issue is that the traits specializations have static methods which
return the typedef'ed PHI_iterator type. In both the IR and MI layers
this is typedef'ed to a custom iterator class defined in an anonymous
namespace giving the types and the functions returning them internal
linkage. However, because the traits specialization is defined in the
'llvm' namespace (where it has to be, specialized template lives there),
and is in turn used in the templated implementation of the SSAUpdater.
This led to the linkage conflict that Clang now warns about.
The simplest solution to me was just to define the PHI_iterator as
a nested class inside the trait specialization. That way it still
doesn't get scoped widely, it can't be accidentally reused somewhere,
etc. This is a little gross just because nested class definitions are
a little gross, but the alternatives seem more ad-hoc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158799 91177308-0d34-0410-b5e6-96231b3b80d8
This patch extends FoldBranchToCommonDest to fold unconditional branches.
For unconditional branches, we fold them if it is easy to update the phi nodes
in the common successors.
rdar://10554090
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158392 91177308-0d34-0410-b5e6-96231b3b80d8
There are some that I didn't remove this round because they looked like
obvious stubs. There are dead variables in gtest too, they should be
fixed upstream.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158090 91177308-0d34-0410-b5e6-96231b3b80d8
IntRange converted from struct to class. So main change everywhere is replacement of ".Low/High" with ".getLow/getHigh()"
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157884 91177308-0d34-0410-b5e6-96231b3b80d8
Implemented IntItem - the wrapper around APInt. Why not to use APInt item directly right now?
1. It will very difficult to implement case ranges as series of small patches. We got several large and heavy patches. Each patch will about 90-120 kb. If you replace ConstantInt with APInt in SwitchInst you will need to changes at the same time all Readers,Writers and absolutely all passes that uses SwitchInst.
2. We can implement APInt pool inside and save memory space. E.g. we use several switches that works with 256 bit items (switch on signatures, or strings). We can avoid value duplicates in this case.
3. IntItem can be easyly easily replaced with APInt.
4. Currenly we can interpret IntItem both as ConstantInt and as APInt. It allows to provide SwitchInst methods that works with ConstantInt for non-updated passes.
Why I need it right now? Currently I need to update SimplifyCFG pass (EqualityComparisons). I need to work with APInts directly a lot, so peaces of code
ConstantInt *V = ...;
if (V->getValue().ugt(AnotherV->getValue()) {
...
}
will look awful. Much more better this way:
IntItem V = ConstantIntVal->getValue();
if (AnotherV < V) {
}
Of course any reviews are welcome.
P.S.: I'm also going to rename ConstantRangesSet to IntegersSubset, and CRSBuilder to IntegersSubsetMapping (allows to map individual subsets of integers to the BasicBlocks).
Since in future these classes will founded on APInt, it will possible to use them in more generic ways.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157576 91177308-0d34-0410-b5e6-96231b3b80d8