Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236120 91177308-0d34-0410-b5e6-96231b3b80d8
Delete subclasses of (the already defunct) `DIScope`, updating users to
use the raw pointers from the `Metadata` hierarchy directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235356 91177308-0d34-0410-b5e6-96231b3b80d8
Gut the `DIDescriptor` wrappers around `MDLocalScope` subclasses. Note
that `DILexicalBlock` wraps `MDLexicalBlockBase`, not `MDLexicalBlock`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234850 91177308-0d34-0410-b5e6-96231b3b80d8
`DIDescriptor`'s subclasses allow construction from incompatible
pointers, and `DIDescriptor` defines a series of `isa<>`-like functions
(e.g., `isCompileUnit()` instead of `isa<MDCompileUnit>()`) that clients
tend to use like this:
if (DICompileUnit(N).isCompileUnit())
foo(DICompileUnit(N));
These construction patterns work together to make `DIDescriptor` behave
differently from normal pointers.
Instead, use built-in `isa<>`, `dyn_cast<>`, etc., and only build
`DIDescriptor`s from pointers that are valid for their type.
I've split this into a few commits for different parts of LLVM and clang
(to decrease the patch size and increase the chance of review).
Generally the changes I made were NFC, but in a few places I made things
stricter if it made sense from the surrounded code.
Eventually a follow-up commit will remove the API for the "old" way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234255 91177308-0d34-0410-b5e6-96231b3b80d8
The only user of `DebugLoc::getFromDILexicalBlock()` was creating a new
`MDLocation` as convenient API for passing an `MDScope`. Stop doing
that, and remove the API. If in the future we actually *want* to create
new DebugLocs, calling `MDLexicalBlock::get()` makes more sense.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233643 91177308-0d34-0410-b5e6-96231b3b80d8
Remove old API for `DebugLoc` now that all the callers have been
updated. If this broke your out-of-tree build, here's a quick map from
the old API to the new one:
DebugLoc DebugLoc::getFromMDLocation(MDNode *)
=> DebugLoc::DebugLoc(MDLocation *)
=> explicit DebugLoc::DebugLoc(MDNode *) // works with broken code
MDNode *DebugLoc::getAsMDNode(LLVMContext &)
=> MDLocation *DebugLoc::get()
=> DebugLoc::operator MDLocation *()
=> MDNode *DebugLoc::getAsMDNode() // works with broken code
bool DebugLoc::isUnknown()
=> DebugLoc::operator MDLocation *()
i.e.: if (MDLocation *DL = ...)
=> DebugLoc::operator bool() // works with broken code
i.e.: if (DebugLoc DL = ...)
void DebugLoc::getScopeAndInlinedAt(MDNode *&, MDNode *&)
=> use: MDNode *DebugLoc::getScope()
and: MDLocation *DebugLoc::getInlinedAt()
MDNode *DebugLoc::getScopeNode(LLVMContext &)
=> MDNode *DebugLoc::getInlinedAtScope()
void DebugLoc::dump(LLVMContext &)
=> void DebugLoc::dump()
void DebugLoc::getFnDebugLoc(LLVMContext &)
=> void DebugLoc::getFnDebugLoc()
MDNode *DebugLoc::getScope(LLVMContext &)
=> MDNode *DebugLoc::getScope()
MDNode *DebugLoc::getInlinedAt(LLVMContext &)
=> MDLocation *DebugLoc::getInlinedAt()
I've noted above the only functions that won't crash on broken code (due
to downcasting to `MDLocation`). If your code could be dealing with
broken IR (i.e., you haven't run the verifier yet, or you've used a
temporary node that will eventually (but not yet) get RAUW'ed to an
`MDLocation`), you need to restrict yourself to those.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233599 91177308-0d34-0410-b5e6-96231b3b80d8
Rewrite `DebugLoc` with a cleaner API that reflects its current status
as a wrapper around an `MDLocation` pointer.
- Add accessors/constructors to/from `MDLocation`.
- Simplify construction from `MDNode`.
- Remove unnecessary `LLVMContext` from APIs.
- Drop some API that isn't useful any more.
- Rewrite documentation.
Actually, I've left the old API behind temporarily at the bottom of the
class so that I can update callers in separate commits. I'll remove it
once the callers are updated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233573 91177308-0d34-0410-b5e6-96231b3b80d8
Write `MDLocation::getInlinedAtScope()` and use it to re-implement
`DebugLoc::getScopeNode()` (and simplify `DISubprogram::Verify()`).
This follows the inlined-at linked list and returns the scope of the
deepest/last location.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233568 91177308-0d34-0410-b5e6-96231b3b80d8
This commit moves `MDLocation`, finishing off PR21433. There's an
accompanying clang commit for frontend testcases. I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.
This changes the schema for `DebugLoc` and `DILocation` from:
!{i32 3, i32 7, !7, !8}
to:
!MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)
Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226048 91177308-0d34-0410-b5e6-96231b3b80d8
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223802 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219010 91177308-0d34-0410-b5e6-96231b3b80d8
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218914 91177308-0d34-0410-b5e6-96231b3b80d8
already lived there and it is where it belongs -- this is the in-memory
debug location representation.
This is just cleanup -- Modules can actually cope with this, but that
doesn't make it right. After chatting with folks that have out-of-tree
stuff, going ahead and moving the rest of the headers seems preferable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202960 91177308-0d34-0410-b5e6-96231b3b80d8
Aside from moving the actual files, this patch only updates the build
system and the source file comments under lib/... that are relevant.
I'll be updating other docs and other files in smaller subsequnet
commits.
While I've tried to test this, but it is entirely possible that there
will still be some build system fallout.
Also, note that I've not changed the library name itself: libLLVMCore.a
is still the library name. I'd be interested in others' opinions about
whether we should rename this as well (I think we should, just not sure
what it might break)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171359 91177308-0d34-0410-b5e6-96231b3b80d8