- For now, loads of [r, r] addressing mode is the same as the
[r, r lsl/lsr/asr #] variants. ARMBaseInstrInfo::getOperandLatency() should
identify the former case and reduce the output latency by 1.
- Also identify [r, r << 2] case. This special form of shifter addressing mode
is "free".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117519 91177308-0d34-0410-b5e6-96231b3b80d8
elements than the result vector type. So, when an instruction like:
%8 = shufflevector <2 x float> %4, <2 x float> %7, <4 x i32> <i32 1, i32 0, i32 3, i32 2>
is translated to a DAG, each operand is changed to a concat_vectors node that appends 2 undef elements. That is:
shuffle [a,b], [c,d] is changed to:
shuffle [a,b,u,u], [c,d,u,u]
That's probably the right thing for x86 but for NEON, we'd much rather have:
shuffle [a,b,c,d], undef
Teach the DAG combiner how to do that transformation for ARM. Radar 8597007.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117482 91177308-0d34-0410-b5e6-96231b3b80d8
The SPU ABI does not mention v64, and all examples
in C suggest v128 are treated similarily to arrays,
we use array alignment for v64 too. This makes the
alignment of e.g. [2 x <2 x i32>] behave "intuitively"
and similar to as if the elements were e.g. i32s.
This also makes an "unaligned store" test to be
aligned, with different (but functionally equivalent)
code generated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117360 91177308-0d34-0410-b5e6-96231b3b80d8
do not double-count the duplicate instructions by counting once from the
beginning and again from the end. Keep track of where the duplicates from
the beginning ended and don't go past that point when counting duplicates
at the end. Radar 8589805.
This change causes one of the MC/ARM/simple-fp-encoding tests to produce
different (better!) code without the vmovne instruction being tested.
I changed the test to produce vmovne and vmoveq instructions but moving
between register files in the opposite direction. That's not quite the same
but predicated versions of those instructions weren't being tested before,
so at least the test coverage is not any worse, just different.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117333 91177308-0d34-0410-b5e6-96231b3b80d8
1. A delay slot filler that searches for valid instructions
to fill the delay slot with. Previously NOPs would always
be inserted into delay slots.
2. Support for MC based instruction printer added.
3. Support for MC based machine code generation and ELF
file generation. ELF file generation does not yet
completely work as much of the ELF support infrastructure
is still x86/x86-64 specific.
4. General clean up of the MBlaze backend code. Much of the
tablegen code has been cleanup and simplified.
Bug Fixes:
1. Removed duplicate periods from subtarget feature descriptions.
2. Many of the instructions had bad machine code information
in the tablegen files. Much of this has been fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116986 91177308-0d34-0410-b5e6-96231b3b80d8
- Initial register pressure in the loop should be all the live defs into the
loop. Not just those from loop preheader which is often empty.
- When an instruction is hoisted, update register pressure from loop preheader
to the original BB.
- Treat only use of a virtual register as kill since the code is still SSA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116956 91177308-0d34-0410-b5e6-96231b3b80d8
"long latency" enough to hoist even if it may increase spilling. Reloading
a value from spill slot is often cheaper than performing an expensive
computation in the loop. For X86, that means machine LICM will hoist
SQRT, DIV, etc. ARM will be somewhat aggressive with VFP and NEON
instructions.
- Enable register pressure aware machine LICM by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116781 91177308-0d34-0410-b5e6-96231b3b80d8
The old algorithm inserted a 'rotqmbyi' instruction which was
both redundant and wrong - it made shufb select bytes from the
wrong end of the input quad.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116701 91177308-0d34-0410-b5e6-96231b3b80d8
have been printed with the "S" modifier after the predicate. With ARM's
unified syntax, they are supposed to go in the other order. We fixed this
for Thumb when we switched to unified syntax but missed changing it for
ARM. Apparently we don't generate these instructions often because no one
noticed until now. Thanks to Bill Wendling for the testcase!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116563 91177308-0d34-0410-b5e6-96231b3b80d8
virtual registers for those stores since RegAllocFast requires that each live
physreg only be used once.
This fixes PR8357.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116222 91177308-0d34-0410-b5e6-96231b3b80d8
alignment for PPC32/64, avoiding some masking operations.
llvm-gcc expands vaarg inline instead of using the instruction
so it has never hit this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116168 91177308-0d34-0410-b5e6-96231b3b80d8
1. Cortex-A8 load / store multiplies can only issue on ALU0.
2. Eliminate A8_Issue, A8_LSPipe will correctly limit the load / store issues.
3. Correctly model all vld1 and vld2 variants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116134 91177308-0d34-0410-b5e6-96231b3b80d8