compute it based on what it knows. As part of this, rename getSectionForMergeableConstant
to getSectionForConstant because it works for non-mergable constants also.
The only functionality change from this is that Xcore will start dropping
its jump tables into readonly section instead of data section in -static mode.
This should be fine as the linker resolves the relocations. If this is a
problem, let me know and we'll come up with another solution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77833 91177308-0d34-0410-b5e6-96231b3b80d8
it is highly specific to the object file that will be generated in the end,
this introduces a new TargetLoweringObjectFile interface that is implemented
for each of ELF/MachO/COFF/Alpha/PIC16 and XCore.
Though still is still a brutal and ugly refactoring, this is a major step
towards goodness.
This patch also:
1. fixes a bunch of dangling pointer problems in the PIC16 backend.
2. disables the TargetLowering copy ctor which PIC16 was accidentally using.
3. gets us closer to xcore having its own crazy target section flags and
pic16 not having to shadow sections with its own objects.
4. fixes wierdness where ELF targets would set CStringSection but not
CStringSection_. Factor the code better.
5. fixes some bugs in string lowering on ELF targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77294 91177308-0d34-0410-b5e6-96231b3b80d8
1. Spell SectionFlags::Writeable as "Writable".
2. Add predicates for deriving SectionFlags from SectionKinds.
3. Sink ELF-specific getSectionPrefixForUniqueGlobal impl into
ELFTargetAsmInfo.
4. Fix SectionFlagsForGlobal to know that BSS/ThreadBSS has the
BSS bit set (the real fix for PR4619).
5. Fix isSuitableForBSS to not put globals with explicit sections
set in BSS (which was the reason #4 wasn't fixed earlier).
6. Remove my previous hack for PR4619.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77085 91177308-0d34-0410-b5e6-96231b3b80d8
depends on XS1A, but I think the ReadOnlySection is already set up for this
and there is no testcase that this breaks. If this is really needed, we can
add the appropriate parameterization to TargetAsmInfo in the future to support
this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76667 91177308-0d34-0410-b5e6-96231b3b80d8
to twist your brain to see it, I believe it is the same as ELFTargetAsmInfo::SelectSectionForGlobal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76664 91177308-0d34-0410-b5e6-96231b3b80d8
the generic ELF version instead. This will result in its mergable constant
sections getting named ".rodata.cst4" instead of ".cp.const4", but the
linker looks at the section flags, not the name of the section AFAICT.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76659 91177308-0d34-0410-b5e6-96231b3b80d8
and extern_weak_odr. These are the same as the non-odr versions,
except that they indicate that the global will only be overridden
by an *equivalent* global. In C, a function with weak linkage can
be overridden by a function which behaves completely differently.
This means that IP passes have to skip weak functions, since any
deductions made from the function definition might be wrong, since
the definition could be replaced by something completely different
at link time. This is not allowed in C++, thanks to the ODR
(One-Definition-Rule): if a function is replaced by another at
link-time, then the new function must be the same as the original
function. If a language knows that a function or other global can
only be overridden by an equivalent global, it can give it the
weak_odr linkage type, and the optimizers will understand that it
is alright to make deductions based on the function body. The
code generators on the other hand map weak and weak_odr linkage
to the same thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66339 91177308-0d34-0410-b5e6-96231b3b80d8