the retains and releases all use the same SSA pointer value.
Also, don't let CFG hazards disrupt nested retain+release pair
optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137399 91177308-0d34-0410-b5e6-96231b3b80d8
rather than plain postorder, so that CFG constructs like single-exit loops
are reliably visited in a sensible order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137398 91177308-0d34-0410-b5e6-96231b3b80d8
SCEV unrolling can unroll loops with arbitrary induction variables. It
is a prerequisite for -disable-iv-rewrite performance. It is also
easily handles loops of arbitrary structure including multiple exits
and is generally more robust.
This is under a temporary option to avoid affecting default
behavior for the next couple of weeks. It is needed so that I can
checkin unit tests for updateUnloop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137384 91177308-0d34-0410-b5e6-96231b3b80d8
Also, my apologies for spoiling the autocomplete on SimplifyInstructions.cpp. I couldn't think of a better filename.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137229 91177308-0d34-0410-b5e6-96231b3b80d8
based on ScalarEvolution without changing the induction variable phis.
This utility is the main tool of IndVarSimplifyPass, but the pass also
restructures induction variables in strange ways that are sensitive to
pass ordering. This provides a way for other loop passes to simplify
new uses of induction variables created during transformation. The
utility may be used by any pass that preserves ScalarEvolution. Soon
LoopUnroll will use it.
The net effect in this checkin is to cleanup the IndVarSimplify pass
by factoring out the SimplifyIndVar algorithm into a standalone utility.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137197 91177308-0d34-0410-b5e6-96231b3b80d8
These are not individual bug fixes. I had to rewrite a good chunk of
the unroller to make it sane. I think it was getting lucky on trivial
completely unrolled loops with no early exits. I included some fairly
simple unit tests for partial unrolling. I didn't do much stress
testing, so it may not be perfect, but should be usable now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137190 91177308-0d34-0410-b5e6-96231b3b80d8
The 'unwind' instruction was acting essentially as a placeholder, because it
would be replaced at the end of this function by a branch to the "unwind
handler". The 'unwind' instruction is going away, so use 'unreachable' instead,
which serves the same purpose as a placeholder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137098 91177308-0d34-0410-b5e6-96231b3b80d8
recurrence, the initial values low bits can sometimes be ignored.
To take advantage of this, added FoldIVUser to IndVarSimplify to fold
an IV operand into a udiv/lshr if the operator doesn't affect the
result.
-indvars -disable-iv-rewrite now transforms
i = phi i4
i1 = i0 + 1
idx = i1 >> (2 or more)
i4 = i + 4
into
i = phi i4
idx = i0 >> ...
i4 = i + 4
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137013 91177308-0d34-0410-b5e6-96231b3b80d8
inlined variable, based on the discussion in PR10542.
This explodes the runtime of several passes down the pipeline due to
a large number of "copies" remaining live across a large function. This
only shows up with both debug and opt, but when it does it creates
a many-minute compile when self-hosting LLVM+Clang. There are several
other cases that show these types of regressions.
All of this is tracked in PR10542, and progress is being made on fixing
the issue. Once its addressed, the re-instated, but until then this
restores the performance for self-hosting and other opt+debug builds.
Devang, let me know if this causes any trouble, or impedes fixing it in
any way, and thanks for working on this!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136953 91177308-0d34-0410-b5e6-96231b3b80d8
- use SmallVectorImpl& for the function argument.
- ignore the operands on the GEP, even if they aren't constant! Much as we
pretend the malloc succeeds, we pretend that malloc + whatever-you-GEP'd-by
is not null. It's magic!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136757 91177308-0d34-0410-b5e6-96231b3b80d8
Don't replace a gep/bitcast with 'undef' because that will form a "free(undef)"
which in turn means "unreachable". What we wanted was a no-op. Instead, analyze
the whole tree and look for all the instructions we need to delete first, then
delete them second, not relying on the use_list to stay consistent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136752 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the 'resume' instruction class, IR parsing, and bitcode reading and
writing. The 'resume' instruction resumes propagation of an existing (in-flight)
exception whose unwinding was interrupted with a 'landingpad' instruction (to be
added later).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136589 91177308-0d34-0410-b5e6-96231b3b80d8
working on x86 (at least for trivial testcases); other architectures will
need more work so that they actually emit the appropriate instructions for
orderings stricter than 'monotonic'. (As far as I can tell, the ARM, PPC,
Mips, and Alpha backends need such changes.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136457 91177308-0d34-0410-b5e6-96231b3b80d8
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136433 91177308-0d34-0410-b5e6-96231b3b80d8
The new EH is more simple in many respects. Mainly, we don't have to worry about
the "llvm.eh.exception" and "llvm.eh.selector" calls being in weird places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136339 91177308-0d34-0410-b5e6-96231b3b80d8
This takes the new 'resume' instruction and turns it into a direct jump to the
caller's landing pad code. The caller's landingpad instruction is merged with
the landingpad instructions of the callee. This is a bit rough and makes some
assumptions in how the code works. But it passes a simple test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136313 91177308-0d34-0410-b5e6-96231b3b80d8
so that a declaration for objc_retain is created when needed if it doesn't
already exist. rdar://9825114.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135821 91177308-0d34-0410-b5e6-96231b3b80d8
size but different element types, so that it filters out the cases
that CreateShuffleVectorCast doesn't handle. This fixes rdar://9786827.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135721 91177308-0d34-0410-b5e6-96231b3b80d8
For -disable-iv-rewrite, perform LFTR without generating a new
"canonical" induction variable. Instead find the "best" existing
induction variable for use in the loop exit test and compute the final
value of that IV for use in the new loop exit test. In short,
convert to a simple eq/ne exit test as long as it's cheap to do so.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135420 91177308-0d34-0410-b5e6-96231b3b80d8
is named after a common idiom (i.e., memset/memcpy). Otherwise, we can run into
infinite recursion. Ideally, the user should use the correct -fno-builtin flag,
but in case they don't we should play nicely.
rdar://9763412
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135286 91177308-0d34-0410-b5e6-96231b3b80d8
an MDNode. This saves a bunch of time and memory in the IR linker, e.g. when
doing LTO of files with debug info.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135172 91177308-0d34-0410-b5e6-96231b3b80d8
an assert on Darwin llvm-gcc builds.
Assertion failed: (castIsValid(op, S, Ty) && "Invalid cast!"), function Create, file /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/build.llvm-gcc-i386-darwin9-RA/llvm.src/lib/VMCore/Instructions.cpp, li\
ne 2067.
etc.
http://smooshlab.apple.com:8013/builders/llvm-gcc-i386-darwin9-RA/builds/2354
--- Reverse-merging r134893 into '.':
U include/llvm/Target/TargetData.h
U include/llvm/DerivedTypes.h
U tools/bugpoint/ExtractFunction.cpp
U unittests/Support/TypeBuilderTest.cpp
U lib/Target/ARM/ARMGlobalMerge.cpp
U lib/Target/TargetData.cpp
U lib/VMCore/Constants.cpp
U lib/VMCore/Type.cpp
U lib/VMCore/Core.cpp
U lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Instrumentation/ProfilingUtils.cpp
U lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/CodeGen/SjLjEHPrepare.cpp
--- Reverse-merging r134888 into '.':
G include/llvm/DerivedTypes.h
U include/llvm/Support/TypeBuilder.h
U include/llvm/Intrinsics.h
U unittests/Analysis/ScalarEvolutionTest.cpp
U unittests/ExecutionEngine/JIT/JITTest.cpp
U unittests/ExecutionEngine/JIT/JITMemoryManagerTest.cpp
U unittests/VMCore/PassManagerTest.cpp
G unittests/Support/TypeBuilderTest.cpp
U lib/Target/MBlaze/MBlazeIntrinsicInfo.cpp
U lib/Target/Blackfin/BlackfinIntrinsicInfo.cpp
U lib/VMCore/IRBuilder.cpp
G lib/VMCore/Type.cpp
U lib/VMCore/Function.cpp
G lib/VMCore/Core.cpp
U lib/VMCore/Module.cpp
U lib/AsmParser/LLParser.cpp
U lib/Transforms/Utils/CloneFunction.cpp
G lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Utils/InlineFunction.cpp
U lib/Transforms/Instrumentation/GCOVProfiling.cpp
U lib/Transforms/Scalar/ObjCARC.cpp
U lib/Transforms/Scalar/SimplifyLibCalls.cpp
U lib/Transforms/Scalar/MemCpyOptimizer.cpp
G lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/Transforms/IPO/ArgumentPromotion.cpp
U lib/Transforms/InstCombine/InstCombineCompares.cpp
U lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
U lib/Transforms/InstCombine/InstCombineCalls.cpp
U lib/CodeGen/DwarfEHPrepare.cpp
U lib/CodeGen/IntrinsicLowering.cpp
U lib/Bitcode/Reader/BitcodeReader.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134949 91177308-0d34-0410-b5e6-96231b3b80d8
LinearFunctionTestReplace rewrite. No functionality.
I've been wanting to group the indvar subphases into sections and
order them by their logical sequence. My next checkin adds functions
related to LFTR, and doing the reorg now should help reviewers. Since,
most of the code in IndVarSimplify.cpp has recently been replaced or
will be replaced soon, obscuring blame should not be an issue. This
seems like an ideal time to shuffle the code around.
I'm happy to take more suggestions for cleaning up the code. Or if
you've been wanting to cleanup anything in this file yourself, now is
a good time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134941 91177308-0d34-0410-b5e6-96231b3b80d8
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134829 91177308-0d34-0410-b5e6-96231b3b80d8
This tightens up checking for overflow in alloca sizes, based on feedback
from Duncan and John about the change in r132926.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134749 91177308-0d34-0410-b5e6-96231b3b80d8
The promotion code lost any alignment information, when hoisting loads and
stores out of the loop. This lead to incorrect aligned memory accesses. We now
use the largest alignment we can prove to be correct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134520 91177308-0d34-0410-b5e6-96231b3b80d8
alloca that only holds a copy of a global and we're going to replace the users
of the alloca with that global, just nuke the lifetime intrinsics. Part of
PR10121.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133905 91177308-0d34-0410-b5e6-96231b3b80d8
"Reinstate r133435 and r133449 (reverted in r133499) now that the clang
self-hosted build failure has been fixed (r133512)."
Due to some additional warnings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133700 91177308-0d34-0410-b5e6-96231b3b80d8
because it won't work after my phi operand changes, because the incoming
blocks will no longer be Uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133512 91177308-0d34-0410-b5e6-96231b3b80d8
ops.
This is a rewrite of the IV simplification algorithm used by
-disable-iv-rewrite. To avoid perturbing the default mode, I
temporarily split the driver and created SimplifyIVUsersNoRewrite. The
idea is to avoid doing opcode/pattern matching inside
IndVarSimplify. SCEV already does it. We want to optimize with the
full generality of SCEV, but optimize def-use chains top down on-demand rather
than rewriting the entire expression bottom-up. This was easy to do
for operations that SCEV can prove are identity function. So we're now
eliminating bitmasks and zero extends this way.
A result of this rewrite is that indvars -disable-iv-rewrite no longer
requires IVUsers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133502 91177308-0d34-0410-b5e6-96231b3b80d8
Change PHINodes to store simple pointers to their incoming basic blocks,
instead of full-blown Uses.
Note that this loses an optimization in SplitCriticalEdge(), because we
can no longer walk the use list of a BasicBlock to find phi nodes. See
the comment I removed starting "However, the foreach loop is slow for
blocks with lots of predecessors".
Extend replaceAllUsesWith() on a BasicBlock to also update any phi
nodes in the block's successors. This mimics what would have happened
when PHINodes were proper Users of their incoming blocks. (Note that
this only works if OldBB->replaceAllUsesWith(NewBB) is called when
OldBB still has a terminator instruction, so it still has some
successors.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133435 91177308-0d34-0410-b5e6-96231b3b80d8
Change various bits of code to make better use of the existing PHINode
API, to insulate them from forthcoming changes in how PHINodes store
their operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133434 91177308-0d34-0410-b5e6-96231b3b80d8
all over the place in different styles and variants. Standardize on two
preferred entrypoints: one that takes a StructType and ArrayRef, and one that
takes StructType and varargs.
In cases where there isn't a struct type convenient, we now add a
ConstantStruct::getAnon method (whose name will make more sense after a few
more patches land).
It would be "really really nice" if the ConstantStruct::get and
ConstantVector::get methods didn't make temporary std::vectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133412 91177308-0d34-0410-b5e6-96231b3b80d8
In cases such as the attached test, where the case value for a switch
destination is used in a phi node that follows the destination, it
might be better to replace that value with the condition value of the
switch, so that more blocks can be folded away with
TryToSimplifyUncondBranchFromEmptyBlock because there are less
conflicts in the phi node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133344 91177308-0d34-0410-b5e6-96231b3b80d8
type's bitwidth matches the (allocated) size of the alloca. This severely
pessimizes vector scalar replacement when the only vector type being used is
something like <3 x float> on x86 or ARM whose allocated size matches a
<4 x float>.
I hope to fix some of the flawed assumptions about allocated size throughout
scalar replacement and reenable this in most cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133338 91177308-0d34-0410-b5e6-96231b3b80d8
spartan right now, but I plan to encode more information in this enum to improve
the correctness and reliability of SRoA. At least this first pass makes it
possible to make VectorTy an actual VectorType.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132937 91177308-0d34-0410-b5e6-96231b3b80d8
might overflow. Re-typing the alloca to a larger type (e.g. double)
hoists a shift into the alloca, potentially exposing overflow in the
expression. rdar://problem/9265821
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132926 91177308-0d34-0410-b5e6-96231b3b80d8
intrinsics. In fact, we'll optimize a bitcast to that when possible. Detect it
when looking for the lifetime intrinsics.
No test case, noticed by inspection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132906 91177308-0d34-0410-b5e6-96231b3b80d8
pad, separating the exception and selector calls from the new lpad. Teaching
it not to do that, or to properly adjust the CFG afterwards, is out of
scope because it would require the other edges to the landing pad to be split
as well (effectively). Instead, just recover from the most likely cases
during inlining. The best long-term solution is to change the exception
representation and commit to either requiring or not requiring the more
complex edge-splitting logic; this is just a shorter-term hack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132799 91177308-0d34-0410-b5e6-96231b3b80d8
assuming that all offsets are legal vector accesses, and thus trying to access
the float member of { <2 x float>, float } as the 3rd element of the first
member.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132766 91177308-0d34-0410-b5e6-96231b3b80d8
former was using the size of the entire alloca, whereas the latter was correctly using
the allocated size of the immediate type being converted (which may differ from the size
of the alloca). This fixes PR10082.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132759 91177308-0d34-0410-b5e6-96231b3b80d8
then we don't want to set the destination in the indirect branch to the
destination. This is because the indirect branch needs its destinations to have
had their block addresses taken. This isn't so of the new critical edge that's
split during this process. If it turns out that the destination block has only
one predecessor, and that being a BB with an indirect branch, then it won't be
marked as 'used' and may be removed.
PR10072
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132638 91177308-0d34-0410-b5e6-96231b3b80d8
which edge to split by pred/succ pair, which means that we can end up splitting
the wrong edge (by case value) in the switch statement entirely. Fixes PR10031!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132535 91177308-0d34-0410-b5e6-96231b3b80d8
variable. Noticed by inspection.
Simulate memset in EvaluateFunction where the target of the memset and the
value we're setting are both the null value. Fixes PR10047!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132288 91177308-0d34-0410-b5e6-96231b3b80d8
transformed by the inliner into a branch to the enclosing landing pad
(when inlined through an invoke). If not so optimized, it is lowered
DWARF EH preparation into a call to _Unwind_Resume (or _Unwind_SjLj_Resume
as appropriate). Its chief advantage is that it takes both the
exception value and the selector value as arguments, meaning that there
is zero effort in recovering these; however, the frontend is required
to pass these down, which is not actually particularly difficult.
Also document the behavior of landing pads a bit better, and make it
clearer that it's okay that personality functions don't always land at
landing pads. This is just a fact of life. Don't write optimizations that
rely on pushing things over an unwind edge.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132253 91177308-0d34-0410-b5e6-96231b3b80d8
- the selector for the landing pad must provide all available information
about the handlers, filters, and cleanups within that landing pad
- calls to _Unwind_Resume must be converted to branches to the enclosing
lpad so as to avoid re-entering the unwinder when the lpad claimed it
was going to handle the exception in some way
This is quite specific to libUnwind-based unwinding. In an effort to not
interfere too badly with other unwinders, and with existing hacks in frontends,
this only triggers on _Unwind_Resume (not _Unwind_Resume_or_Rethrow) and does
nothing with selectors if it cannot find a selector call for either lpad.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132200 91177308-0d34-0410-b5e6-96231b3b80d8
This looks like it flagged an actual bug. Devang, please review. I added
the parentheses that change behavior, but make the behavior more closely
match commit log's intent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132165 91177308-0d34-0410-b5e6-96231b3b80d8
crc32.[8|16|32] have been renamed to .crc32.32.[8|16|32] and
crc64.[8|16|32] have been renamed to .crc32.64.[8|64].
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132163 91177308-0d34-0410-b5e6-96231b3b80d8
Use a proper worklist for use-def traversal without holding onto an
iterator. Now that we process all IV uses, we need complete logic for
resusing existing derived IV defs. See HoistStep.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132103 91177308-0d34-0410-b5e6-96231b3b80d8
case of a switch instruction. Back off this optimization when this would
eliminate all of the predecessors to the latch.
Sorry, I am unable to reduce a reasonably sized test case.
rdar://9486843
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132022 91177308-0d34-0410-b5e6-96231b3b80d8
aligned.
Teach memcpyopt to not give up all hope when confonted with an underaligned
memcpy feeding an overaligned byval. If the *source* of the memcpy can be
determined to be adequeately aligned, or if it can be forced to be, we can
eliminate the memcpy.
This addresses PR9794. We now compile the example into:
define i32 @f(%struct.p* nocapture byval align 8 %q) nounwind ssp {
entry:
%call = call i32 @g(%struct.p* byval align 8 %q) nounwind
ret i32 %call
}
in both x86-64 and x86-32 mode. We still don't get a tailcall though,
because tailcalls apparently can't handle byval.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131884 91177308-0d34-0410-b5e6-96231b3b80d8
failing to form a memset, then having to delete it" but my approximation
isn't safe for self recurrent loops. Instead of doign a hack, just
do it the right way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131858 91177308-0d34-0410-b5e6-96231b3b80d8
I also changed -simplifycfg, -jump-threading and -codegenprepare to use this to produce slightly better code without any extra cleanup passes (AFAICT this was the only place in -simplifycfg where now-dead conditions of replaced terminators weren't being cleaned up). The only other user of this function is -sccp, but I didn't read that thoroughly enough to figure out whether it might be holding pointers to instructions that could be deleted by this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131855 91177308-0d34-0410-b5e6-96231b3b80d8
causing it to get into infinite loops when it would widen a
load (which can necessarily leave around dead loads).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131847 91177308-0d34-0410-b5e6-96231b3b80d8