AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207235 91177308-0d34-0410-b5e6-96231b3b80d8
AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207165 91177308-0d34-0410-b5e6-96231b3b80d8
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine-intrinsics testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207130 91177308-0d34-0410-b5e6-96231b3b80d8
FoldConstantArithmetic() only knows how to deal with a few target independent
ISD opcodes. Bail early if it sees a target-specific ISD node. These node do
funny things with operand types which may break the assumptions of the code
that follows, and there's no actual folding that can be done anyway. For example,
non-constant 256 bit vector shifts on X86 have a shift-amount operand that's a
128-bit v4i32 vector regardless of what the first operand type is and that breaks
the assumption that the operand types must match.
rdar://16530923
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205937 91177308-0d34-0410-b5e6-96231b3b80d8
This way, you can check the number of sign bits in the
operands. The depth parameter it already has is pretty useless
without this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205649 91177308-0d34-0410-b5e6-96231b3b80d8
This adds back r204781.
Original message:
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204934 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r204781.
I will follow up to with msan folks to see what is what they
were trying to do with aliases to weak aliases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204784 91177308-0d34-0410-b5e6-96231b3b80d8
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204781 91177308-0d34-0410-b5e6-96231b3b80d8
Usually opaque constants shouldn't be folded, unless they are simple unary
operations that don't create new constants. Although this shouldn't drop the
opaque constant flag. This commit fixes this.
Related to <rdar://problem/14774662>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204737 91177308-0d34-0410-b5e6-96231b3b80d8
This patch renames method 'isConstantSplat' as 'getConstantSplatValue'
(mainly for consistency reasons), and rewrites its logic to ensure
that we always perform a legal 'cast<ConstantSDNode>'.
Added test shift-combine-crash.ll to verify that DAGCombiner no longer crashes with an assertion failure in the attempt to simplify a vector shift by a vector of all undef counts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204536 91177308-0d34-0410-b5e6-96231b3b80d8
The syntax for "cmpxchg" should now look something like:
cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic
where the second ordering argument gives the required semantics in the case
that no exchange takes place. It should be no stronger than the first ordering
constraint and cannot be either "release" or "acq_rel" (since no store will
have taken place).
rdar://problem/15996804
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203559 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch we used getIntImmCost from TargetTransformInfo to determine if
a load of a constant should be converted to just a constant, but the threshold
for this was set to an arbitrary value. This value works well for the two
targets (X86 and ARM) that implement this target-hook, but it isn't
target-independent at all.
Now targets have the possibility to decide directly if this optimization should
be performed. The default value is set to false to preserve the current
behavior. The target hook has been moved to TargetLowering, which removed the
last use and need of TargetTransformInfo in SelectionDAG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200271 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r200058 and adds the using directive for
ARMTargetTransformInfo to silence two g++ overload warnings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200062 91177308-0d34-0410-b5e6-96231b3b80d8
This commit caused -Woverloaded-virtual warnings. The two new
TargetTransformInfo::getIntImmCost functions were only added to the superclass,
and to the X86 subclass. The other targets were not updated, and the
warning highlighted this by pointing out that e.g. ARMTTI::getIntImmCost was
hiding the two new getIntImmCost variants.
We could pacify the warning by adding "using TargetTransformInfo::getIntImmCost"
to the various subclasses, or turning it off, but I suspect that it's wrong to
leave the functions unimplemnted in those targets. The default implementations
return TCC_Free, which I don't think is right e.g. for ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200058 91177308-0d34-0410-b5e6-96231b3b80d8
Retry commit r200022 with a fix for the build bot errors. Constant expressions
have (unlike instructions) module scope use lists and therefore may have users
in different functions. The fix is to simply ignore these out-of-function uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200034 91177308-0d34-0410-b5e6-96231b3b80d8
This pass identifies expensive constants to hoist and coalesces them to
better prepare it for SelectionDAG-based code generation. This works around the
limitations of the basic-block-at-a-time approach.
First it scans all instructions for integer constants and calculates its
cost. If the constant can be folded into the instruction (the cost is
TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
consider it expensive and leave it alone. This is the default behavior and
the default implementation of getIntImmCost will always return TCC_Free.
If the cost is more than TCC_BASIC, then the integer constant can't be folded
into the instruction and it might be beneficial to hoist the constant.
Similar constants are coalesced to reduce register pressure and
materialization code.
When a constant is hoisted, it is also hidden behind a bitcast to force it to
be live-out of the basic block. Otherwise the constant would be just
duplicated and each basic block would have its own copy in the SelectionDAG.
The SelectionDAG recognizes such constants as opaque and doesn't perform
certain transformations on them, which would create a new expensive constant.
This optimization is only applied to integer constants in instructions and
simple (this means not nested) constant cast experessions. For example:
%0 = load i64* inttoptr (i64 big_constant to i64*)
Reviewed by Eric
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200022 91177308-0d34-0410-b5e6-96231b3b80d8
This commit teaches DAG to reassociate vector ops, which in turn enables
constant folding of vector op chains that appear later on during custom lowering
and DAG combine.
Reviewed by Andrea Di Biagio
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199135 91177308-0d34-0410-b5e6-96231b3b80d8
operand into the Value interface just like the core print method is.
That gives a more conistent organization to the IR printing interfaces
-- they are all attached to the IR objects themselves. Also, update all
the users.
This removes the 'Writer.h' header which contained only a single function
declaration.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198836 91177308-0d34-0410-b5e6-96231b3b80d8
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198688 91177308-0d34-0410-b5e6-96231b3b80d8
ConstantSDNodes (or UNDEFs) into a simple BUILD_VECTOR.
For example, given the following sequence of dag nodes:
i32 C = Constant<1>
v4i32 V = BUILD_VECTOR C, C, C, C
v4i32 Result = SIGN_EXTEND_INREG V, ValueType:v4i1
The SIGN_EXTEND_INREG node can be folded into a build_vector since
the vector in input is a BUILD_VECTOR of constants.
The optimized sequence is:
i32 C = Constant<-1>
v4i32 Result = BUILD_VECTOR C, C, C, C
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198084 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When getConstant() is called for an expanded vector type, it is split into
multiple scalar constants which are then combined using appropriate build_vector
and bitcast operations.
In addition to the usual big/little endian differences, the case where the
element-order of the vector does not have the same endianness as the elements
themselves is also accounted for. For example, for v4i32 on big-endian MIPS,
the byte-order of the vector is <3210,7654,BA98,FEDC>. For little-endian, it is
<0123,4567,89AB,CDEF>.
Handling this case turns out to be a nop since getConstant() returns a splatted
vector (so reversing the element order doesn't change the value)
This fixes a number of cases in MIPS MSA where calling getConstant() during
operation legalization introduces illegal types (e.g. to legalize v2i64 UNDEF
into a v2i64 BUILD_VECTOR of illegal i64 zeros). It should also handle bigger
differences between illegal and legal types such as legalizing v2i64 into v8i16.
lowerMSASplatImm() in the MIPS backend no longer needs to avoid calling
getConstant() so this function has been updated in the same patch.
For the sake of transparency, the steps I've taken since the review are:
* Added 'virtual' to isVectorEltOrderLittleEndian() as requested. This revealed
that the MIPS tests were falsely passing because a polymorphic function was
not actually polymorphic in the reviewed patch.
* Fixed the tests that were now failing. This involved deleting the code to
handle the MIPS MSA element-order (which was previously doing an byte-order
swap instead of an element-order swap). This left
isVectorEltOrderLittleEndian() unused and it was deleted.
* Fixed build failures caused by rebasing beyond r194467-r194472. These build
failures involved the bset, bneg, and bclr instructions added in these commits
using lowerMSASplatImm() in a way that was no longer valid after this patch.
Some of these were fixed by calling SelectionDAG::getConstant() instead,
others were fixed by a new function getBuildVectorSplat() that provided the
removed functionality of lowerMSASplatImm() in a more sensible way.
Reviewers: bkramer
Reviewed By: bkramer
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1973
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194811 91177308-0d34-0410-b5e6-96231b3b80d8
Most SelectionDAG code drops the TBAA info when creating a new form of a
load and store (e.g. during legalization, or when converting a plain
load to an extending one). This patch tries to catch all cases where
the TBAA information can legitimately be carried over.
The patch adds alternative forms of getLoad() and getExtLoad() that take
a MachineMemOperand instead of individual fields. (The corresponding
getTruncStore() already exists.) The idea is to use the MachineMemOperand
forms when all fields are carried over (size, pointer info, isVolatile,
isNonTemporal, alignment and TBAA info). If some adjustment is being
made, e.g. to narrow the load, then we still pass the individual fields
but also pass the TBAA info.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193517 91177308-0d34-0410-b5e6-96231b3b80d8
VTList has a long life cycle through the module and getVTList is frequently called. In current getVTList, sequential search over a std::vector is used, this is inefficient in big module.
This patch use FoldingSet to implement hashing mechanism when searching.
Reviewer: Nadav Rotem
Test : Pass unit tests & LNT test suite
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193150 91177308-0d34-0410-b5e6-96231b3b80d8
SDNode destructors are never called. As an optimization use AtomicSDNode's
internal storage if we have a small number of operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191636 91177308-0d34-0410-b5e6-96231b3b80d8
This is useful for targets like R600, which only support GT, GE, NE, and EQ
condition codes as it removes the need to handle unsupported condition
codes in target specific code.
There are no tests with this commit, but R600 has been updated to take
advantage of this new feature, so its existing selectcc tests are now
testing the swapped operands path.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191601 91177308-0d34-0410-b5e6-96231b3b80d8
Occasionally DAGCombiner can spot that a SETCC operation is completely
redundant and reduce it to "all true" or "all false". If this happens to a
vector, the value produced has to take account of what a normal comparison
would have produced, which may be an all-1s bitmask.
The fix in SelectionDAG.cpp is tested, however, as far as I can see the code in
TargetLowering.cpp is possibly unreachable and almost certainly irrelevant when
triggered so there are no tests. However, I believe it's still clearly the
right change and may save someone else some hassle if it suddenly becomes
reachable. So I'm doing it anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190147 91177308-0d34-0410-b5e6-96231b3b80d8