Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253511 91177308-0d34-0410-b5e6-96231b3b80d8
This commit changes the interface of the vld[1234], vld[234]lane, and vst[1234],
vst[234]lane ARM neon intrinsics and associates an address space with the
pointer that these intrinsics take. This changes, e.g.,
<2 x i32> @llvm.arm.neon.vld1.v2i32(i8*, i32)
to
<2 x i32> @llvm.arm.neon.vld1.v2i32.p0i8(i8*, i32)
This change ensures that address spaces are fully taken into account in the ARM
target during lowering of interleaved loads and stores.
Differential Revision: http://reviews.llvm.org/D12985
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248887 91177308-0d34-0410-b5e6-96231b3b80d8
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts, "r213024 - Revert r212572 "improve BasicAA CS-CS queries", it
causes PR20303." with a fix for the bug in pr20303. As it turned out, the
relevant code was both wrong and over-conservative (because, as with the code
it replaced, it would return the overall ModRef mask even if just Ref had been
implied by the argument aliasing results). Hopefully, this correctly fixes both
problems.
Thanks to Nick Lewycky for reducing the test case for pr20303 (which I've
cleaned up a little and added in DSE's test directory). The BasicAA test has
also been updated to check for this error.
Original commit message:
BasicAA contains knowledge of certain intrinsics, such as memcpy and memset,
and uses that information to form more-accurate answers to CallSite vs. Loc
ModRef queries. Unfortunately, it did not use this information when answering
CallSite vs. CallSite queries.
Generically, when an intrinsic takes one or more pointers and the intrinsic is
marked only to read/write from its arguments, the offset/size is unknown. As a
result, the generic code that answers CallSite vs. CallSite (and CallSite vs.
Loc) queries in AA uses UnknownSize when forming Locs from an intrinsic's
arguments. While BasicAA's CallSite vs. Loc override could use more-accurate
size information for some intrinsics, it did not do the same for CallSite vs.
CallSite queries.
This change refactors the intrinsic-specific logic in BasicAA into a generic AA
query function: getArgLocation, which is overridden by BasicAA to supply the
intrinsic-specific knowledge, and used by AA's generic implementation. This
allows the intrinsic-specific knowledge to be used by both CallSite vs. Loc and
CallSite vs. CallSite queries, and simplifies the BasicAA implementation.
Currently, only one function, Mac's memset_pattern16, is handled by BasicAA
(all the rest are intrinsics). As a side-effect of this refactoring, BasicAA's
getModRefBehavior override now also returns OnlyAccessesArgumentPointees for
this function (which is an improvement).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213219 91177308-0d34-0410-b5e6-96231b3b80d8
BasicAA contains knowledge of certain intrinsics, such as memcpy and memset,
and uses that information to form more-accurate answers to CallSite vs. Loc
ModRef queries. Unfortunately, it did not use this information when answering
CallSite vs. CallSite queries.
Generically, when an intrinsic takes one or more pointers and the intrinsic is
marked only to read/write from its arguments, the offset/size is unknown. As a
result, the generic code that answers CallSite vs. CallSite (and CallSite vs.
Loc) queries in AA uses UnknownSize when forming Locs from an intrinsic's
arguments. While BasicAA's CallSite vs. Loc override could use more-accurate
size information for some intrinsics, it did not do the same for CallSite vs.
CallSite queries.
This change refactors the intrinsic-specific logic in BasicAA into a generic AA
query function: getArgLocation, which is overridden by BasicAA to supply the
intrinsic-specific knowledge, and used by AA's generic implementation. This
allows the intrinsic-specific knowledge to be used by both CallSite vs. Loc and
CallSite vs. CallSite queries, and simplifies the BasicAA implementation.
Currently, only one function, Mac's memset_pattern16, is handled by BasicAA
(all the rest are intrinsics). As a side-effect of this refactoring, BasicAA's
getModRefBehavior override now also returns OnlyAccessesArgumentPointees for
this function (which is an improvement).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212572 91177308-0d34-0410-b5e6-96231b3b80d8