references. For example, this allows gvn to eliminate the load in
this example:
void foo(int n, int* p, int *q) {
p[0] = 0;
p[1] = 1;
if (n) {
*q = p[0];
}
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118714 91177308-0d34-0410-b5e6-96231b3b80d8
nodes can be used in loops, this could result in infinite looping
if there is no recursion limit, so add such a limit. It is also
used for the SelectInst case because in theory there could be an
infinite loop there too if the basic block is unreachable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118694 91177308-0d34-0410-b5e6-96231b3b80d8
It is only supported for ARM code. Normally Thumb2 code would use DMB instead,
but depending on how the compiler is invoked (e.g., -mattr=-db) that might be
disabled. This prevents a "cannot select MEMBARRIER_MCR" error in that
situation. Radar 8644195
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118642 91177308-0d34-0410-b5e6-96231b3b80d8
to optionally look for constant or local (alloca) memory.
Teach BasicAliasAnalysis::pointsToConstantMemory to look through Select
and Phi nodes, and to support looking for local memory.
Remove FunctionAttrs' PointsToLocalOrConstantMemory function, now that
AliasAnalysis knows all the tricks that it knew.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118412 91177308-0d34-0410-b5e6-96231b3b80d8
of a select instruction, see if doing the compare with the
true and false values of the select gives the same result.
If so, that can be used as the value of the comparison.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118378 91177308-0d34-0410-b5e6-96231b3b80d8
different forms of this instruction (movw/movl/movq) which we reported
as being ambiguous. Since they all do the same thing, gas just picks the
one with the shortest encoding. Follow its lead here.
This implements rdar://8208615
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118362 91177308-0d34-0410-b5e6-96231b3b80d8
exposed:
GAS doesn't accept "fcomip %st(1)", it requires "fcomip %st(1), %st(0)"
even though st(0) is implicit in all other fp stack instructions.
Fortunately, there is an alias for fcomip named "fcompi" and gas does
accept the default argument for the alias (boggle!).
As such, switch the canonical form of this instruction to "pi" instead
of "ip". This makes the code generator and disassembler generate pi,
avoiding the gas bug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118356 91177308-0d34-0410-b5e6-96231b3b80d8
shift-by-1 instructions, where the asmstring doesn't contain
the implicit 1. It turns out that a bunch of these rotate
instructions were completely broken because they used 1
instead of $1.
This fixes assembly mismatches on "rclb $1, %bl" and friends,
where we used to generate the 3 byte form, we now generate the
proper 2-byte form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118355 91177308-0d34-0410-b5e6-96231b3b80d8
floating point stack instructions instead of looking for b/w/l/q.
This fixes issues where we'd accidentally match fistp to fistpl,
when it is in fact an ambiguous instruction.
This changes the behavior of llvm-mc to reject fstp, which was the
correct fix for rdar://8456389:
t.s:1:1: error: ambiguous instructions require an explicit suffix (could be 'fstps', 'fstpl', or 'fstpt')
fstp (%rax)
it also causes us to correctly reject fistp and fist, which addresses
PR8528:
t.s:2:1: error: ambiguous instructions require an explicit suffix (could be 'fistps', or 'fistpl')
fistp (%rax)
^
t.s:3:1: error: ambiguous instructions require an explicit suffix (could be 'fists', or 'fistl')
fist (%rax)
^
Thanks to Ismail Donmez for tracking down the issue here!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118346 91177308-0d34-0410-b5e6-96231b3b80d8
sequence of loads and stores was being generated to perform the
copy on the x86 targets if the parameter was less than 4 byte
aligned, causing llc to use up vast amounts of memory and time.
Use a "rep movs" form instead. PR7170.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118260 91177308-0d34-0410-b5e6-96231b3b80d8
We could be more aggressive about making this work for a larger range of constants,
but this seems like a good start.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118201 91177308-0d34-0410-b5e6-96231b3b80d8
all of the different element sizes are pseudo instructions that map down to vext.8 underneath, with
the immediate shifted left to reflect the increased element size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118183 91177308-0d34-0410-b5e6-96231b3b80d8
vldr.64 d1, [r0, #-32]
The problem was with how the addressing mode 5 encodes the offsets. This change
makes sure that the way offsets are handled in addressing mode 5 is consistent
throughout the MC code. It involves re-refactoring the "getAddrModeImmOpValue"
method into an "Imm12" and "addressing mode 5" version. But not to worry! The
majority of the duplicated code has been unified.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118144 91177308-0d34-0410-b5e6-96231b3b80d8
1. Fix pre-ra scheduler so it doesn't try to push instructions above calls to
"optimize for latency". Call instructions don't have the right latency and
this is more likely to use introduce spills.
2. Fix if-converter cost function. For ARM, it should use instruction latencies,
not # of micro-ops since multi-latency instructions is completely executed
even when the predicate is false. Also, some instruction will be "slower"
when they are predicated due to the register def becoming implicit input.
rdar://8598427
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118135 91177308-0d34-0410-b5e6-96231b3b80d8