Summary:
This patch impleemnts DS_PERMUTE/DS_BPERMUTE instruction definitions and intrinsics,
which are new since VI.
Reviewers: tstellarAMD, arsenm
Subscribers: llvm-commits, arsenm
Differential Revision: http://reviews.llvm.org/D17614
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262356 91177308-0d34-0410-b5e6-96231b3b80d8
In the code below on 32-bit targets, x would previously get forwarded to g()
without sign-extension to 32 bits as required by the parameter attribute.
void g(signed short);
void f(unsigned short x) {
g(x);
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262352 91177308-0d34-0410-b5e6-96231b3b80d8
Function lto_module_create_in_local_context() would previously
rely on the default LLVMContext being created for it by
LTOModule::makeLTOModule(). This context exits the program on
error and is not arranged to update sLastStringError in
tools/lto/lto.cpp.
Function lto_module_create_in_local_context() now creates an
LLVMContext by itself, sets it up correctly to its needs and then
passes it to LTOModule::createInLocalContext() which takes
ownership of the context and keeps it present for the lifetime of
the returned LTOModule.
Function LTOModule::makeLTOModule() is modified to take a
reference to LLVMContext (instead of a pointer) and no longer
creates a default context when nullptr is passed to it. Method
LTOModule::createInContext() that takes a pointer to LLVMContext
is removed because it allows to pass a nullptr to it. Instead
LTOModule::createFromBuffer() (that takes a reference to
LLVMContext) should be used.
Differential Revision: http://reviews.llvm.org/D17715
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262330 91177308-0d34-0410-b5e6-96231b3b80d8
in the PassBuilder.
These are really just stubs for now, but they give a nice API surface
that Clang or other tools can start learning about and enabling for
experimentation.
I've also wired up parsing various synthetic module pass names to
generate these set pipelines. This allows the pipelines to be combined
with other passes and have their order controlled, with clear separation
between the *kind* of canned pipeline, and the *level* of optimization
to be used within that canned pipeline.
The most interesting part of this patch is almost certainly the spec for
the different optimization levels. I don't think we can ever have hard
and fast rules that would make it easy to determine whether a particular
optimization makes sense at a particular level -- it will always be in
large part a judgement call. But hopefully this will outline the
expected rationale that should be used, and the direction that the
pipelines should be taken. Much of this was based on a long llvm-dev
discussion I started years ago to try and crystalize the intent behind
these pipelines, and now, at long long last I'm returning to the task of
actually writing it down somewhere that we can cite and try to be
consistent with.
Differential Revision: http://reviews.llvm.org/D12826
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262196 91177308-0d34-0410-b5e6-96231b3b80d8
Change MachineInstr API to prefer MachineInstr& over MachineInstr*
whenever the parameter is expected to be non-null. Slowly inching
toward being able to fix PR26753.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262149 91177308-0d34-0410-b5e6-96231b3b80d8
In all but one case, change the DFAPacketizer API to take MachineInstr&
instead of MachineInstr*. In DFAPacketizer::endPacket(), take
MachineBasicBlock::iterator. Besides cleaning up the API, this is in
search of PR26753.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262142 91177308-0d34-0410-b5e6-96231b3b80d8
Update APIs in MachineInstrBundle.h to take and return MachineInstr&
instead of MachineInstr* when the instruction cannot be null. Besides
being a nice cleanup, this is tacking toward a fix for PR26753.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262141 91177308-0d34-0410-b5e6-96231b3b80d8
manager proxies and use those rather than repeating their definition
four times.
There are real differences between the two directions: outer AMs are
const and don't need to have invalidation tracked. But every proxy in
a particular direction is identical except for the analysis manager type
and the IR unit they proxy into. This makes them prime candidates for
nice templates.
I've started introducing explicit template instantiation declarations
and definitions as well because we really shouldn't be emitting all this
everywhere. I'm going to go back and add the same for the other
templates like this in a follow-up patch.
I've left the analysis manager as an opaque type rather than using two
IR units and requiring it to be an AnalysisManager template
specialization. I think its important that users retain the ability to
provide their own custom analysis management layer and provided it has
the appropriate API everything should Just Work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262127 91177308-0d34-0410-b5e6-96231b3b80d8
This matches the behavior of the HSAIL clock instruction.
s_realmemtime is used if the subtarget supports it, and falls
back to s_memtime if not.
Also introduces new intrinsics for each of s_memtime / s_memrealtime.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262119 91177308-0d34-0410-b5e6-96231b3b80d8
Avoid another implicit conversion from MachineInstrBundleIterator to
MachineInstr*, this time in MachineInstrBuilder.h (this is in pursuit of
PR26753).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262118 91177308-0d34-0410-b5e6-96231b3b80d8
Take MachineInstr by reference instead of by pointer in SlotIndexes and
the SlotIndex wrappers in LiveIntervals. The MachineInstrs here are
never null, so this cleans up the API a bit. It also incidentally
removes a few implicit conversions from MachineInstrBundleIterator to
MachineInstr* (see PR26753).
At a couple of call sites it was convenient to convert to a range-based
for loop over MachineBasicBlock::instr_begin/instr_end, so I added
MachineBasicBlock::instrs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262115 91177308-0d34-0410-b5e6-96231b3b80d8
This should save a pointer of padding from all MSVC Value subclasses.
Recall that MSVC will not pack the following bitfields together:
unsigned Bits : 29;
unsigned Flag1 : 1;
unsigned Flag2 : 1;
unsigned Flag3 : 1;
Add a static_assert because LLVM developers always trip over this
behavior. This regressed in June.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262045 91177308-0d34-0410-b5e6-96231b3b80d8
This patch updates cmake build scripts to build on Haiku. It adds Haiku x86_64 to config.guess.
Please consider reviewing.
Pathc by Jérôme Duval.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262038 91177308-0d34-0410-b5e6-96231b3b80d8
analyses in the new pass manager.
These just handle really basic stuff: turning a type name into a string
statically that is nice to print in logs, and getting a static unique ID
for each analysis.
Sadly, the format of passes in anonymous namespaces makes using their
names in tests really annoying so I've customized the names of the no-op
passes to keep tests sane to read.
This is the first of a few simplifying refactorings for the new pass
manager that should reduce boilerplate and confusion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262004 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Check that we're using SCEV for the same loop we're simulating. Otherwise, we might try to use the iteration number of the current loop in SCEV expressions for inner/outer loops IVs, which is clearly incorrect.
Reviewers: chandlerc, hfinkel
Subscribers: sanjoy, llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17632
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261958 91177308-0d34-0410-b5e6-96231b3b80d8
the testing more more explicit.
This will currently fail on platforms without support for getTypeName.
While an assert failure seems too harsh, I'm hoping we're OK with the
regression test failure, and I'd like to find out about what platforms
actually exist in this state if there are any so we can get
implementations in place for them.
But if we just can't fix all the host compilers to have a reasonably
portable variant of getTypeName and are worried about xfailing this test
on those platforms, I can add the horrible regular expression magic to
make the tests support "unknown" here as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261853 91177308-0d34-0410-b5e6-96231b3b80d8
This creates the new-style LoopPassManager and wires it up with dummy
and print passes.
This version doesn't support modifying the loop nest at all. It will
be far easier to discuss and evaluate the approaches to that with this
in place so that the boilerplate is out of the way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261831 91177308-0d34-0410-b5e6-96231b3b80d8
(which they emulate). This way we don't use that path when compiled with
ICC on Windows where it mimics MSVC's behavior and supports __FUNCSIG__.
Thanks for David Majnemer again for spotting this better pattern!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261827 91177308-0d34-0410-b5e6-96231b3b80d8
This extracts the type name from __PRETTY_FUNCTION__ for compilers that
support it (I've opted Clang, GCC, and ICC into this as I've tested that
they work) and from __FUNCSIG__ which is very similar on MSVC. The
routine falls back gracefully on a stub "UNKNOWN_TYPE" string with
compilers or formats it doesn't understand.
This should be enough for a lot of common cases in LLVM where the real
goal is just to log or print a type name as a debugging aid, and save
a ton of boilerplate in the process. Notably, I'm planning to use this
to remove all the getName() boiler plate from the new pass manager.
The design and implementation is based on a bunch of advice and
discussion with Richard Smith and experimenting with most versions of
Clang and GCC. David Majnemer also provided excellent advice on how best
to do this with MSVC. Richard also checked that ICC does something
reasonable and I'll watch the build bots for other compilers. It'd be
great if someone could contribute logic for xlC and/or other toolchains.
Differential Revision: http://reviews.llvm.org/D17565
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261819 91177308-0d34-0410-b5e6-96231b3b80d8
(This is the second attemp to commit this patch, after fixing pr26652 & pr26653).
This patch detects vector reductions before instruction selection. Vector
reductions are vectorized reduction operations, and for such operations we have
freedom to reorganize the elements of the result as long as the reduction of them
stay unchanged. This will enable some reduction pattern recognition during
instruction combine such as SAD/dot-product on X86. A flag is added to
SDNodeFlags to mark those vector reduction nodes to be checked during instruction
combine.
To detect those vector reductions, we search def-use chains starting from the
given instruction, and check if all uses fall into two categories:
1. Reduction with another vector.
2. Reduction on all elements.
in which 2 is detected by recognizing the pattern that the loop vectorizer
generates to reduce all elements in the vector outside of the loop, which
includes several ShuffleVector and one ExtractElement instructions.
Differential revision: http://reviews.llvm.org/D15250
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261804 91177308-0d34-0410-b5e6-96231b3b80d8