This code was crashing always with oprofile enabled, since it tried to create a StringRef
out of NULL, which run strlen on NULL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91046 91177308-0d34-0410-b5e6-96231b3b80d8
way for each TargetJITInfo subclass to allocate its own stubs. This
means stubs aren't as exactly-sized anymore, but it lets us get rid of
TargetJITInfo::emitFunctionStubAtAddr(), which lets ARM and PPC
support the eager JIT, fixing http://llvm.org/PR4816.
* Rename the JITEmitter's stub creation functions to describe the kind
of stub they create. So far, all of them create lazy-compilation
stubs, but they sometimes get used when far-call stubs are needed.
Fixing http://llvm.org/PR5201 will involve fixing this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89715 91177308-0d34-0410-b5e6-96231b3b80d8
It's probably better in the long run to replace the
indirect-GlobalVariable system. That'll be done after a subsequent
patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89708 91177308-0d34-0410-b5e6-96231b3b80d8
libffi support and that the interpreter can't call external functions without
it. Patch by Timo Juhani Lindfors! Fixes PR5466.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89062 91177308-0d34-0410-b5e6-96231b3b80d8
The large code model is documented at
http://www.x86-64.org/documentation/abi.pdf and says that calls should
assume their target doesn't live within the 32-bit pc-relative offset
that fits in the call instruction.
To do this, we turn off the global-address->target-global-address
conversion in X86TargetLowering::LowerCall(). The first attempt at
this broke the lazy JIT because it can separate the movabs(imm->reg)
from the actual call instruction. The lazy JIT receives the address of
the movabs as a relocation and needs to record the return address from
the call; and then when that call happens, it needs to patch the
movabs with the newly-compiled target. We could thread the call
instruction into the relocation and record the movabs<->call mapping
explicitly, but that seems to require at least as much new
complication in the code generator as this change.
To fix this, we make lazy functions _always_ go through a call
stub. You'd think we'd only have to force lazy calls through a stub on
difficult platforms, but that turns out to break indirect calls
through a function pointer. The right fix for that is to distinguish
between calls and address-of operations on uncompiled functions, but
that's complex enough to leave for someone else to do.
Another attempt at this defined a new CALL64i pseudo-instruction,
which expanded to a 2-instruction sequence in the assembly output and
was special-cased in the X86CodeEmitter's emitInstruction()
function. That broke indirect calls in the same way as above.
This patch also removes a hack forcing Darwin to the small code model.
Without far-call-stubs, the small code model requires things of the
JITMemoryManager that the DefaultJITMemoryManager can't provide.
Thanks to echristo for lots of testing!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88984 91177308-0d34-0410-b5e6-96231b3b80d8
MachineRelocations, "stub" always refers to a far-call stub or a
load-a-faraway-global stub, so this patch adds "Far" to the term. (Other stubs
are used for lazy compilation and dlsym address replacement.) The variable was
also inconsistent between the positive and negative sense, and the positive
sense ("NeedStub") was more demanding than is accurate (since a nearby-enough
function can be called directly even if the platform often requires a stub).
Since the negative sense causes double-negatives, I switched to
"MayNeedFarStub" globally.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86363 91177308-0d34-0410-b5e6-96231b3b80d8
of going through the global TheJIT variable. This makes it easier to use
features of JITEmitter that aren't in JITCodeEmitter for fixing PR5201.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86305 91177308-0d34-0410-b5e6-96231b3b80d8
now correctly runs clang's test/CodeGen/indirect-goto.c. The JIT will abort
on it until someone feels compelled to implement this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85488 91177308-0d34-0410-b5e6-96231b3b80d8
being destroyed. This allows users to run global optimizations like globaldce
even after some functions have been jitted.
This patch also removes the Function* parameter to
JITEventListener::NotifyFreeingMachineCode() since it can cause that to be
called when the Function is partially destroyed. This change will be even more
helpful later when I think we'll want to allow machine code to actually outlive
its Function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85182 91177308-0d34-0410-b5e6-96231b3b80d8
Remove LowerAllocations pass.
Update some more passes to treate free calls just like they were treating FreeInst.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85176 91177308-0d34-0410-b5e6-96231b3b80d8
compiled.
When functions are compiled, they accumulate references in the JITResolver's
stub maps. This patch removes those references when the functions are
destroyed. It's illegal to destroy a Function when any thread may still try to
call its machine code.
This patch also updates r83987 to use ValueMap instead of explicit CallbackVHs
and fixes a couple "do stuff inside assert()" bugs from r84522.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84975 91177308-0d34-0410-b5e6-96231b3b80d8
JITEmitter.
I'm gradually making Functions auto-remove themselves from the JIT when they're
destroyed. In this case, the Function needs to be removed from the JITEmitter,
but the map recording which Functions need to be removed lived behind the
JITMemoryManager interface, which made things difficult.
This patch replaces the deallocateMemForFunction(Function*) method with a pair
of methods deallocateFunctionBody(void *) and deallocateExceptionTable(void *)
corresponding to the two startFoo/endFoo pairs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84651 91177308-0d34-0410-b5e6-96231b3b80d8
The JITResolver maps Functions to their canonical stubs and all callsites for
lazily-compiled functions to their target Functions. To make Function
destruction work, I'm going to need to remove all callsites on destruction, so
this patch also adds the reverse mapping for that.
There was an incorrect assumption in here that the only stub for a function
would be the one caused by needing to lazily compile it, while x86-64 far calls
and dlsym-stubs could also cause such stubs, but I didn't look for a test case
that the assumption broke.
This also adds DenseMapInfo<AssertingVH> so I can use DenseMaps instead of
std::maps.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84522 91177308-0d34-0410-b5e6-96231b3b80d8
GlobalValue is destroyed. Function destruction still leaks machine code and
can crash on leaked stubs, but this is some progress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83987 91177308-0d34-0410-b5e6-96231b3b80d8
mappings, which could cause errors and assert-failures. This patch fixes that,
adds a test, and refactors the global-mapping-removal code into a single place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83678 91177308-0d34-0410-b5e6-96231b3b80d8
the new predicates I added) instead of going through a context and doing a
pointer comparison. Besides being cheaper, this allows a smart compiler
to turn the if sequence into a switch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83297 91177308-0d34-0410-b5e6-96231b3b80d8
By the way, this code is buggy. You can't keep a map<MDNode *, something>
because the MDNode may be destroyed and reused for something else.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83141 91177308-0d34-0410-b5e6-96231b3b80d8