Summary:
While working on a project I wound up generating a fairly large lookup table (10k entries) of callbacks inside of a static constructor. Clang was taking upwards of ~10 minutes to compile the lookup table. I generated a smaller test case (http://www.inolen.com/static_initializer_test.ll) that, after running with -ftime-report, pointed fingers at GlobalOpt and MemCpyOptimizer.
Running globalopt took around ~9 minutes. The slowdown came from how GlobalOpt merged stores from static constructors individually into the global initializer in EvaluateStaticConstructor. For each store it discovered and wanted to commit, it would copy the existing global initializer and then merge in the individual store. I changed this so that stores are now grouped by global, and sorted from most significant to least significant by their GEP indexes (e.g. a store to GEP 0, 0 comes before GEP 0, 0, 1). With this representation, the existing initializer can be copied and all new stores merged into it in a single pass.
With this patch and http://reviews.llvm.org/D11198, the lookup table that was taking ~10 minutes to compile now compiles in around 5 seconds. I've ran 'make check' and the test-suite, which all passed.
I'm not really sure who to tag as a reviewer, Lang mentioned that Chandler may be appropriate.
Reviewers: chandlerc, nlewycky
Subscribers: nlewycky, llvm-commits
Differential Revision: http://reviews.llvm.org/D11200
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242935 91177308-0d34-0410-b5e6-96231b3b80d8
pipeline.
Even before I started improving its runtime, it was already crazy fast
once the call graph exists, and if we can get it to be conservatively
correct, will still likely catch a lot of interesting and useful cases.
So it may well be useful to enable by default.
But more importantly for me, this should make it easier for me to test
that changes aren't breaking it in fundamental ways by enabling it for
normal builds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242895 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, a load from an alloca that is used in as single block and is not preceded
by a store is replaced by undef. This is not always correct if the single block is
inside a loop.
Fix the logic so that:
1) If there are no stores in the block, replace the load with an undef, as before.
2) If there is a store (regardless of where it is in the block w.r.t the load), bail
out, and let the rest of mem2reg handle this alloca.
Patch by: gil.rapaport@intel.com
Differential Revision: http://reviews.llvm.org/D11355
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242884 91177308-0d34-0410-b5e6-96231b3b80d8
In r242510, non-instrumented allocas are now moved into the first basic block. This patch limits that to only move allocas that are present *after* the first instrumented one (i.e. only move allocas up). A testcase was updated to show behavior in these two cases. Without the patch, an alloca could be moved down, and could cause an invalid IR.
Differential Revision: http://reviews.llvm.org/D11339
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242883 91177308-0d34-0410-b5e6-96231b3b80d8
through APIs that are no longer necessary now that the update API has
been removed.
This will make changes to the AA interfaces significantly less
disruptive (I hope). Either way, it seems like a really nice cleanup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242882 91177308-0d34-0410-b5e6-96231b3b80d8
part of simplifying its interface and usage in preparation for porting
to work with the new pass manager.
Note that this will likely expose that we have dead arguments, members,
and maybe even pass requirements for AA. I'll be cleaning those up in
seperate patches. This just zaps the actual update API.
Differential Revision: http://reviews.llvm.org/D11325
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242881 91177308-0d34-0410-b5e6-96231b3b80d8
change because the diff is *useless*. I assure you, I just switched to
early-return in this function.
Cleanup in preparation for my next commit, as requested in code review!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242880 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: The current code in LoopUnswtich::processCurrentLoop() mixes trivial loop unswitch and non-trivial loop unswitch together. It goes over all basic blocks in the loop and checks if a condition is trivial or non-trivial unswitch condition. However, trivial unswitch condition can only occur in the loop header basic block (where it controls whether or not the loop does something at all). This refactoring separate trivial loop unswitch and non-trivial loop unswitch. Before going over all basic blocks in the loop, it checks if the loop header contains a trivial unswitch condition. If so, unswitch it. Otherwise, go over all blocks like before but don't check trivial condition any more since they are not possible to be in the other blocks. This code has no functionality change.
Reviewers: meheff, reames, broune
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11276
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242873 91177308-0d34-0410-b5e6-96231b3b80d8
types and loads, loads or stores widened past the size of an alloca,
etc.
This started off with a bug report about big-endian behavior with
bitfields and loads and stores to a { i32, i24 } struct. An initial
attempt to fix this was sent for review in D10357, but that didn't
really get to the root of the problem.
The core issue was that canConvertValue and convertValue in SROA were
handling different bitwidth integers by doing a zext of the integer. It
wouldn't do a trunc though, only a zext! This would in turn lead SROA to
form an i24 load from an i24 alloca, zext it to i32, and then use it.
This would at least produce the wrong value for big-endian systems.
One of my many false starts here was to correct the computation for
big-endian systems by shifting. But this doesn't actually work because
the original code has a 64-bit store to the entire 8 bytes, and a 32-bit
load of the last 4 bytes, and because the alloc size is 8 bytes, we
can't lose that last (least significant if bigendian) byte! The real
problem here is that we're forming an i24 load in SROA which is actually
not sufficiently wide to load all of the necessary bits here. The source
has an i32 load, and SROA needs to form that as well.
The straightforward way to do this is to disable the zext logic in
canConvertValue and convertValue, forcing us to actually load all
32-bits. This seems like a really good change, but it in turn breaks
several other parts of SROA.
First in the chain of knock-on failures, we had places where we were
doing integer-widening promotion even though some of the integer loads
or stores extended *past the end* of the alloca's memory! There was even
a comment about preventing this, but it only prevented the case where
the type had a different bit size from its store size. So I added checks
to handle the cases where we actually have a widened load or store and
to avoid trying to special integer widening promotion in those cases.
Second, we actually rely on the ability to promote in the face of loads
past the end of an alloca! This is important so that we can (for
example) speculate loads around PHI nodes to do more promotion. The bits
loaded are garbage, but as long as they aren't used and the alignment is
suitable high (which it wasn't in the test case!) this is "fine". And we
can't stop promoting here, lots of things stop working well if we do. So
we need to add specific logic to handle the extension (and truncation)
case, but *only* where that extension or truncation are over bytes that
*are outside the alloca's allocated storage* and thus totally bogus to
load or store.
And of course, once we add back this correct handling of extension or
truncation, we need to correctly handle bigendian systems to avoid
re-introducing the exact bug that started us off on this chain of misery
in the first place, but this time even more subtle as it only happens
along speculated loads atop a PHI node.
I've ported an existing test for PHI speculation to the big-endian test
file and checked that we get that part correct, and I've added several
more interesting big-endian test cases that should help check that we're
getting this correct.
Fun times.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242869 91177308-0d34-0410-b5e6-96231b3b80d8
Use a named lambda for readability, common some code, remove a stale comments, and use llvm style variable names.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242827 91177308-0d34-0410-b5e6-96231b3b80d8
We insert a bitcast which obfuscates the getCalledFunction for the utility
function which looks up attributes from the called function. Loosing ABI
changing parameter attributes is a bad thing.
rdar://21516488
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242807 91177308-0d34-0410-b5e6-96231b3b80d8
A bit more code cleanup: delete some a trivial true assertion and supporting code, remove a redundant cast, and use count in assertions where feasible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242805 91177308-0d34-0410-b5e6-96231b3b80d8
We can use builders to simplify part of the code and we only check for the existance of the metadata value; this enables us to delete some redundant code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242751 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Arguments to llvm.localescape must be static allocas. They must be at
some statically known offset from the frame or stack pointer so that
other functions can access them with localrecover.
If we ever want to instrument these, we can use more indirection to
recover the addresses of these local variables. We can do it during
clang irgen or with the asan module pass.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11307
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242726 91177308-0d34-0410-b5e6-96231b3b80d8
Not sure if the optimizer will save the call as getCalledFunction()
is not a trivial access function but the code is clearer this way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242641 91177308-0d34-0410-b5e6-96231b3b80d8
directly model in the new PM.
This also was an incredibly brittle and expensive update API that was
never fully utilized by all the passes that claimed to preserve AA, nor
could it reasonably have been extended to all of them. Any number of
places add uses of values. If we ever wanted to reliably instrument
this, we would want a callback hook much like we have with ValueHandles,
but doing this for every use addition seems *extremely* expensive in
terms of compile time.
The only user of this update mechanism is GlobalsModRef. The idea of
using this to keep it up to date doesn't really work anyways as its
analysis requires a symmetric analysis of two different memory
locations. It would be very hard to make updates be sufficiently
rigorous to *guarantee* symmetric analysis in this way, and it pretty
certainly isn't true today.
However, folks have been using GMR with this update for a long time and
seem to not be hitting the issues. The reported issue that the update
hook fixes isn't even a problem any more as other changes to
GetUnderlyingObject worked around it, and that issue stemmed from *many*
years ago. As a consequence, a prior patch provided a flag to control
the unsafe behavior of GMR, and this patch removes the update mechanism
that has questionable compile-time tradeoffs and is causing problems
with moving to the new pass manager. Note the lack of test updates --
not one test in tree actually requires this update, even for a contrived
case.
All of this was extensively discussed on the dev list, this patch will
just enact what that discussion decides on. I'm sending it for review in
part to show what I'm planning, and in part to show the *amazing* amount
of work this avoids. Every call to the AA here is something like three
to six indirect function calls, which in the non-LTO pipeline never do
any work! =[
Differential Revision: http://reviews.llvm.org/D11214
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242605 91177308-0d34-0410-b5e6-96231b3b80d8
Instrumentation and the runtime library were in disagreement about
ASan shadow offset on Android/AArch64.
This fixes a large number of existing tests on Android/AArch64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242595 91177308-0d34-0410-b5e6-96231b3b80d8
Since r230724 ("Skip promotable allocas to improve performance at -O0"), there is a regression in the generated debug info for those non-instrumented variables. When inspecting such a variable's value in LLDB, you often get garbage instead of the actual value. ASan instrumentation is inserted before the creation of the non-instrumented alloca. The only allocas that are considered standard stack variables are the ones declared in the first basic-block, but the initial instrumentation setup in the function breaks that invariant.
This patch makes sure uninstrumented allocas stay in the first BB.
Differential Revision: http://reviews.llvm.org/D11179
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242510 91177308-0d34-0410-b5e6-96231b3b80d8
Internalizing an individual comdat group member without also internalizing
the other members of the comdat can break comdat semantics. For example,
if a module contains a reference to an internalized comdat member, and the
linker chooses a comdat group from a different object file, this will break
the reference to the internalized member.
This change causes the internalizer to only internalize comdat members if all
other members of the comdat are not externally visible. Once a comdat group
has been fully internalized, there is no need to apply comdat rules to its
members; later optimization passes (e.g. globaldce) can legally drop individual
members of the comdat. So we drop the comdat attribute from all comdat members.
Differential Revision: http://reviews.llvm.org/D10679
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242423 91177308-0d34-0410-b5e6-96231b3b80d8
This extension point allows passes to be executed right before the vectorizer
and other highly target specific optimizations are run.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242389 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is a trivial code change with no functionality effect.
When LoopUnswitch determines trivial unswitch condition, it checks whether the loop header's terminator instruction is a branch instruction or switch instruction since trivial unswitch condition can only apply to these two instruction types. The current code does not fail the check directly on other instruction types, but check the nullness of LoopExitBB variable instead. The added else clause makes the check fail immediately on other instruction types and makes the code more obvious.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11239
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242345 91177308-0d34-0410-b5e6-96231b3b80d8
Self-referential constants containing references to a merged function
no longer cause the MergeFunctions pass to infinite loop. Also adds a
reproduction IR which would otherwise fail, which was isolated from a similar
issue in Chromium.
Author: jrkoenig
Reviewers: nlewycky, jfb
Subscribers: llvm-commits, nlewycky, jfb
Differential Revision: http://reviews.llvm.org/D11208
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242337 91177308-0d34-0410-b5e6-96231b3b80d8
This is useful when we want to do block frequency analysis
conditionally (e.g. only in PGO mode) but don't want to add
one more pass dependence.
Patch by congh.
Approved by dexonsmith.
Differential Revision: http://reviews.llvm.org/D11196
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242248 91177308-0d34-0410-b5e6-96231b3b80d8
I am planning to add more nested classes inside RuntimePointerCheck so
all these triple-nesting would be hard to follow.
Also rename it to RuntimePointerChecking (i.e. append 'ing').
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242218 91177308-0d34-0410-b5e6-96231b3b80d8
Sometimes an incidentally created instruction can duplicate a Value used
elsewhere. It then often doesn't end up in the leader table. If it's later
removed, we attempt to remove it from the leader table and segfault.
Instead we should just ignore the removal request, which won't cause any
problems. The reverse situation, where the original instruction is replaced by
the new one (which you might think could leave the leader table empty) cannot
occur, because the incidental instruction will never be found in the first
place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242199 91177308-0d34-0410-b5e6-96231b3b80d8
Volatile loads and stores are made visible in global state regardless of
what memory is involved. It is not correct to disregard the ordering
and synchronization scope because it is possible to synchronize with
memory operations performed by hardware.
This partially addresses PR23737.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242126 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we would refrain from attempting to increase the linkage of
available_externally globals because they were considered weak for the
linker. Now they are treated more like a declaration instead of a weak
definition.
This was causing SSE alignment faults in Chromuim, when some code
assumed it could increase the alignment of a dllimported global that it
didn't control. http://crbug.com/509256
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242091 91177308-0d34-0410-b5e6-96231b3b80d8
When spotting that a loop can use ctpop, we were incorrectly replacing all uses of a value with a value derived from ctpop.
The bug here was exposed because we were replacing a use prior to the ctpop with the ctpop value and so we have a use before def, i.e., we changed
%tobool.5 = icmp ne i32 %num, 0
store i1 %tobool.5, i1* %ptr
br i1 %tobool.5, label %for.body.lr.ph, label %for.end
to
store i1 %1, i1* %ptr
%0 = call i32 @llvm.ctpop.i32(i32 %num)
%1 = icmp ne i32 %0, 0
br i1 %1, label %for.body.lr.ph, label %for.end
Even if we inserted the ctpop so that it dominates the store here, that would still be incorrect. The store doesn’t want the result of ctpop.
The fix is very simple, and involves replacing only the branch condition with the ctpop instead of all uses.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242068 91177308-0d34-0410-b5e6-96231b3b80d8
Enable runtime unrolling for loops with unroll count metadata ("#pragma unroll N")
and a runtime trip count. Also, do not unroll loops with unroll full metadata if the
loop has a runtime loop count. Previously, such loops would be unrolled with a
very large threshold (pragma-unroll-threshold) if runtime unrolled happened to be
enabled resulting in a very large (and likely unwise) unroll factor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242047 91177308-0d34-0410-b5e6-96231b3b80d8
Passes should never modify it, just use the const version. While there
reduce copying in LoopInterchange. No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242041 91177308-0d34-0410-b5e6-96231b3b80d8