64-bit PDBs never have FPO data. They have xdata instead.
Also improve error recovery of stream summary dumping while I'm here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273046 91177308-0d34-0410-b5e6-96231b3b80d8
In order to efficiently write PDBs, we need to be able to make a
StreamWriter class similar to a StreamReader, which can transparently deal
with writing to discontiguous streams, and we need to use this for all
writing, similar to how we use StreamReader for all reading.
Most discontiguous streams are the typical numbered streams that appear in
a PDB file and are described by the directory, but the exception to this,
that until now has been parsed by hand, is the directory itself.
MappedBlockStream works by querying the directory to find out which blocks
a stream occupies and various other things, so naturally the same logic
could not possibly work to describe the blocks that the directory itself
resided on.
To solve this, I've introduced an abstraction IPDBStreamData, which allows
the client to query for the list of blocks occupied by the stream, as well
as the stream length. I provide two implementations of this: one which
queries the directory (for indexed streams), and one which queries the
super block (for the directory stream).
This has the side benefit of vastly simplifying the code to parse the
directory. Whereas before a mini state machine was rolled by hand, now we
simply use FixedStreamArray to read out the stream sizes, then build a
vector of FixedStreamArrays for the stream map, all in just a few lines of
code.
Reviewed By: ruiu
Differential Revision: http://reviews.llvm.org/D21046
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271982 91177308-0d34-0410-b5e6-96231b3b80d8
When printing line information and file checksums, we were printing
the file offset field from the struct header. This teaches
llvm-pdbdump how to turn those numbers into the filename. In the
case of file checksums, this is done by looking in the global
string table. In the case of line contributions, this is done
by indexing into the file names buffer of the DBI stream. Why
they use a different technique I don't know.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271630 91177308-0d34-0410-b5e6-96231b3b80d8
Unlike other sections that can grow to any size, the COFF section header
stream has maximum length because each record is fixed size and the COFF
file format limits the maximum number of sections. So I decided to not
create a specific stream class for it. Instead, I added a member function
to DbiStream class which returns a vector of COFF headers.
Differential Revision: http://reviews.llvm.org/D20717
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271557 91177308-0d34-0410-b5e6-96231b3b80d8
Due to differences in template instantiation rules, it is not
portable to static_assert(false) inside of an invalid specialization
of a template. Instead I just =delete the method so that it can't
be used, and leave a comment that it must be explicitly specialized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271027 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r271024 due to error: static_assert failed
"You must either provide a specialization of VarStreamArrayExtractor
or a custom extractor"
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271026 91177308-0d34-0410-b5e6-96231b3b80d8
PDBs can be extremely large. We're already mapping the entire
PDB into the process's address space, but to make matters worse
the blocks of the PDB are not arranged contiguously. So, when
we have something like an array or a string embedded into the
stream, we have to make a copy. Since it's convenient to use
traditional data structures to iterate and manipulate these
records, we need the memory to be contiguous.
As a result of this, we were using roughly twice as much memory
as the file size of the PDB, because every stream was copied
out and re-stitched together contiguously.
This patch addresses this by improving the MappedBlockStream
to allocate from a BumpPtrAllocator only when a read requires
a discontiguous read. Furthermore, it introduces some data
structures backed by a stream which can iterate over both
fixed and variable length records of a PDB. Since everything
is backed by a stream and not a buffer, we can read almost
everything from the PDB with zero copies.
Differential Revision: http://reviews.llvm.org/D20654
Reviewed By: ruiu
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@270951 91177308-0d34-0410-b5e6-96231b3b80d8
We have need to reuse this functionality, including making
additional generic stream types that are smarter about how and
when they copy memory versus referencing the original memory.
So all of these structures belong in the common library
rather than being pdb specific.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@270751 91177308-0d34-0410-b5e6-96231b3b80d8
When dumping huge PDB files, too many of the options were grouped
together so you would get neverending spew of output. This patch
introduces more granular display options so you can only dump the
fields you actually care about.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@270607 91177308-0d34-0410-b5e6-96231b3b80d8
Publics stream seems to contain information as to public symbols.
It actually contains a serialized hash table along with fixed-sized
headers. This patch is not complete. It scans only till the end of
the stream and dump the header information. I'll write code to
de-serialize the hash table later.
Reviewers: zturner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D20256
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269484 91177308-0d34-0410-b5e6-96231b3b80d8
PDB has a lot of similar data structures. We already have code
for parsing a Name Map, but PDB seems to have a different but
very similar structure that is a hash table. This is the
beginning of code needed in order to parse the name hash table,
but it is not yet complete. It parses the basic metadata of
the hash table, the bucket array, and the names buffer, but
doesn't use any of these fields yet as the data structure
requires a non-trivial amount of work to understand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268268 91177308-0d34-0410-b5e6-96231b3b80d8