Fast ISel isn't able to handle 'insertvalue' and it causes a large slowdown
during -O0 compilation. We don't necessarily need to generate an aggregate of
the values here if they're just going to be extracted directly afterwards.
<rdar://problem/10530851>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146481 91177308-0d34-0410-b5e6-96231b3b80d8
test cases where there were a lot of relocations applied relative to a large
rodata section. Gas would create a symbol for each of these whereas we would
be relative to the beginning of the rodata section. This change mimics what
gas does.
Patch by Jack Carter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146468 91177308-0d34-0410-b5e6-96231b3b80d8
of the targets we know about. Because this is cached, rebuilds won't
detect when new targets show up. It's also a bit simpler to just say
"all". If users want to restrict the target set, they can still do so,
and then the cache will preserve what they have explicitly set this
field to.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146467 91177308-0d34-0410-b5e6-96231b3b80d8
undefined result. This adds new ISD nodes for the new semantics,
selecting them when the LLVM intrinsic indicates that the undef behavior
is desired. The new nodes expand trivially to the old nodes, so targets
don't actually need to do anything to support these new nodes besides
indicating that they should be expanded. I've done this for all the
operand types that I could figure out for all the targets. Owners of
various targets, please review and let me know if any of these are
incorrect.
Note that the expand behavior is *conservatively correct*, and exactly
matches LLVM's current behavior with these operations. Ideally this
patch will not change behavior in any way. For example the regtest suite
finds the exact same instruction sequences coming out of the code
generator. That's why there are no new tests here -- all of this is
being exercised by the existing test suite.
Thanks to Duncan Sands for reviewing the various bits of this patch and
helping me get the wrinkles ironed out with expanding for each target.
Also thanks to Chris for clarifying through all the discussions that
this is indeed the approach he was looking for. That said, there are
likely still rough spots. Further review much appreciated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146466 91177308-0d34-0410-b5e6-96231b3b80d8
Constant pool entries with different alignment may cause more alignment
padding to be inserted. Compute the amount of padding needed, and try to
pick the location that requires the least amount of padding.
Also take the extra padding into account when the water is above the
use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146458 91177308-0d34-0410-b5e6-96231b3b80d8
This should always be done as a matter of principal. I don't have a
case that exposes the problem. I just noticed this recently while
scanning the code and realized I meant to fix it long ago.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146438 91177308-0d34-0410-b5e6-96231b3b80d8
subdirectories to traverse into.
- Originally I wanted to avoid this and just autoscan, but this has one key
flaw in that new subdirectories can not automatically trigger a rerun of the
llvm-build tool. This is particularly a pain when switching back and forth
between trees where one has added a subdirectory, as the dependencies will
tend to be wrong. This will also eliminates FIXME implicitly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146436 91177308-0d34-0410-b5e6-96231b3b80d8
If we create new intervals for a variable that is being spilled, then those new intervals are not guaranteed to also spill. This means that anything reading from the original spilling value might not get the correct value if spills were missed.
Fixes <rdar://problem/10546864>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146428 91177308-0d34-0410-b5e6-96231b3b80d8