This commit adds a new target-independent calling convention for C++ TLS
access functions. It aims to minimize overhead in the caller by perserving as
many registers as possible.
The target-specific implementation for X86-64 is defined as following:
Arguments are passed as for the default C calling convention
The same applies for the return value(s)
The callee preserves all GPRs - except RAX and RDI
The access function makes C-style TLS function calls in the entry and exit
block, C-style TLS functions save a lot more registers than normal calls.
The added calling convention ties into the existing implementation of the
C-style TLS functions, so we can't simply use existing calling conventions
such as preserve_mostcc.
rdar://9001553
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254737 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit b7250858d96b8ce567681214273ac0e62713c661.
Reverting in order to investigate Windows test failure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254687 91177308-0d34-0410-b5e6-96231b3b80d8
This change adds support for an optional weight when merging profile data with the llvm-profdata tool.
Weights are specified by adding an option ':<weight>' suffix to the input file names.
Adding support for arbitrary weighting of input profile data allows for relative importance to be placed on the
input data from multiple training runs.
Both sampled and instrumented profiles are supported.
Reviewers: dnovillo, bogner, davidxl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14547
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254669 91177308-0d34-0410-b5e6-96231b3b80d8
The @llvm.get.dynamic.area.offset.* intrinsic family is used to get the offset
from native stack pointer to the address of the most recent dynamic alloca on
the caller's stack. These intrinsics are intendend for use in combination with
@llvm.stacksave and @llvm.restore to get a pointer to the most recent dynamic
alloca. This is useful, for example, for AddressSanitizer's stack unpoisoning
routines.
Patch by Max Ostapenko.
Differential Revision: http://reviews.llvm.org/D14983
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254404 91177308-0d34-0410-b5e6-96231b3b80d8
The main motivation is to not require a latex installation when building
the documentation. I would also expect a better image quality and the
ability to copy&paste from formulas with a javascript based solution for
displaying the math.
Differential Revision: http://reviews.llvm.org/D14960
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254048 91177308-0d34-0410-b5e6-96231b3b80d8
Consolidate the description of -binary/-text option description
to avoid duplicate ID error by sphinux-build.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254018 91177308-0d34-0410-b5e6-96231b3b80d8
The new option is similar to the SampleProfile dump option.
- dump raw/indexed format into text profile format
- merge the profile and output into text profile format.
Note that Value Profiling data text format is not yet designed.
That functionality will be added later.
Differential Revision: http://reviews.llvm.org/D14894
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253913 91177308-0d34-0410-b5e6-96231b3b80d8
The masked intrinsics support all integer and floating point data types. I added the pointer type to this list.
Added tests for CodeGen and for Loop Vectorizer.
Updated the Language Reference.
Differential Revision: http://reviews.llvm.org/D14150
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253544 91177308-0d34-0410-b5e6-96231b3b80d8
This change introduces an instrumentation intrinsic instruction for
value profiling purposes, the lowering of the instrumentation intrinsic
and raw reader updates. The raw profile data files for llvm-profdata
testing are updated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253484 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change teaches LLVM's inliner to track and suitably adjust
deoptimization state (tracked via deoptimization operand bundles) as it
inlines through call sites. The operation is described in more detail
in the LangRef changes.
Reviewers: reames, majnemer, chandlerc, dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14552
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253438 91177308-0d34-0410-b5e6-96231b3b80d8
Several backends have instructions to reverse the order of bits in an integer. Conceptually matching such patterns is similar to @llvm.bswap, and it was mentioned in http://reviews.llvm.org/D14234 that it would be best if these patterns were matched in InstCombine instead of reimplemented in every different target.
This patch introduces an intrinsic @llvm.bitreverse.i* that operates similarly to @llvm.bswap. For plumbing purposes there is also a new ISD node ISD::BITREVERSE, with simple expansion and promotion support.
The intention is that InstCombine's BSWAP detection logic will be extended to support BITREVERSE too, and @llvm.bitreverse intrinsics emitted (if the backend supports lowering it efficiently).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252878 91177308-0d34-0410-b5e6-96231b3b80d8
When working with tokens, it is often the case that one has instructions
which consume a token and produce a new token. Currently, we have no
mechanism to represent an initial token state.
Instead, we can create a notional "empty token" by inventing a new
constant which captures the semantics we would like. This new constant
is called ConstantTokenNone and is written textually as "token none".
Differential Revision: http://reviews.llvm.org/D14581
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252811 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change introduces the notion of "deoptimization" operand bundles.
LLVM can recognize and optimize these in more precise ways than it can a
generic "unknown" operand bundles.
The current form of this special recognition / optimization is an enum
entry in LLVMContext, a LangRef blurb and a verifier rule. Over time we
will teach LLVM to do more aggressive optimization around deoptimization
operand bundles, exploiting known facts about kinds of state
deoptimization operand bundles are allowed to track.
Reviewers: reames, majnemer, chandlerc, dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14551
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252806 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch adds documentation on compiling CUDA with LLVM as requested by many
engineers and researchers. It includes not only user guides but also some
internals (mostly optimizations) so that early adopters can start hacking and
contributing.
Quite a few researchers who contacted us haven't used LLVM before, which is
unsurprising as it hasn't been long since LLVM picked up CUDA. So I added a
short summary to help these folks get started with LLVM.
I expect this document to evolve substantially down the road. The user guides
will be much simplified after the Clang integration is done. However, the
internals should continue growing to include for example performance debugging
and key areas to improve.
Reviewers: chandlerc, meheff, broune, tra
Subscribers: silvas, jingyue, llvm-commits, eliben
Differential Revision: http://reviews.llvm.org/D14370
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252660 91177308-0d34-0410-b5e6-96231b3b80d8
"GCC requires the freestanding environment provide memcpy, memmove, memset
and memcmp": https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc/Standards.html
Hence in GNUEABI targets LLVM should not convert 'memops' to their equivalent
'__aeabi_memops'. This convertion violates GCC contract.
The -meabi flag controls whether or not LLVM will modify 'memops' in GNUEABI
targets.
Without -meabi: use the triple default EABI.
With -meabi=default: use the triple default EABI.
With -meabi=gnu: use 'memops'.
With -meabi=4 or -meabi=5: use '__aeabi_memops'.
With -meabi set to an unknown value: same as -meabi=default.
Patch by Vinicius Tinti.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252462 91177308-0d34-0410-b5e6-96231b3b80d8
This marker prevents optimization passes from adding 'tail' or
'musttail' markers to a call. Is is used to prevent tail call
optimization from being performed on the call.
rdar://problem/22667622
Differential Revision: http://reviews.llvm.org/D12923
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252368 91177308-0d34-0410-b5e6-96231b3b80d8
This attribute allows the compiler to assume that the function never recurses into itself, either directly or indirectly (transitively). This can be used among other things to demote global variables to locals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252282 91177308-0d34-0410-b5e6-96231b3b80d8
Windows has two different mangling specifiers. `x` is used on x86 for the `_`
UserLabelPrefix. Others use `w` for the no UserLabelPrefix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251260 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This makes attribute accessors on `CallInst` and `InvokeInst` do the
(conservatively) right thing. This essentially involves, in some
cases, *not* falling back querying the attributes on the called
`llvm::Function` when operand bundles are present.
Attributes locally present on the `CallInst` or `InvokeInst` will still
override operand bundle semantics. The LangRef has been amended to
reflect this. Note: this change does not do anything prevent
`-function-attrs` from inferring `CallSite` local attributes after
inspecting the called function -- that will be done as a separate
change.
I've used `-adce` and `-early-cse` to test these changes. There is
nothing special about these passes (and they did not require any
changes) except that they seemed be the easiest way to write the tests.
This change does not add deal with `argmemonly`. That's a later change
because alias analysis requires a related fix before `argmemonly` can be
tested.
Reviewers: reames, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13961
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@250973 91177308-0d34-0410-b5e6-96231b3b80d8