Previously, LiveIntervalAnalysis would infer phi joins by looking for multiply
defined registers. That doesn't work if the phi join is implicitly defined in
all but one of the predecessors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96994 91177308-0d34-0410-b5e6-96231b3b80d8
getelementptr. Despite only doing so in the case where x is a known
array object and c can be converted to an index within range, this
could still be invalid if c is actually the address of an object
allocated outside of LLVM. Also, SCEVExpander, the original motivation
for this code, has since been improved to avoid inttoptr+ptroint in
more cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96950 91177308-0d34-0410-b5e6-96231b3b80d8
operators.
The test difference is just due to the multiplication operands
being commuted (and thus requiring a more elaborate match). In
optimized code, that expression would be folded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96816 91177308-0d34-0410-b5e6-96231b3b80d8
during a tail call. A parameter might overwrite this stack slot during the tail
call.
The sequence during a tail call is:
1.) load return address to temp reg
2.) move parameters (might involve storing to return address stack slot)
3.) store return address to new location from temp reg
If the stack location is marked immutable CodeGen can colocate load (1) with the
store (3).
This fixes bug 6225.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96783 91177308-0d34-0410-b5e6-96231b3b80d8
SSE min and max instructions. The real thing this code needs to be
concerned about is negative zero.
Update the sse-minmax.ll test accordingly, and add tests for
-enable-unsafe-fp-math mode as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96775 91177308-0d34-0410-b5e6-96231b3b80d8
induction variable value and a loop-variant value, don't force the
insert position to be at the post-increment position, because it may
not be dominated by the loop-variant value. This fixes a
use-before-def problem noticed on PPC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96774 91177308-0d34-0410-b5e6-96231b3b80d8
true or false as its exit condition. These are usually eliminated by
SimplifyCFG, but the may be left around during a pass which wishes
to preserve the CFG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96683 91177308-0d34-0410-b5e6-96231b3b80d8
dragonegg self-host build. I reverted 96640 in order to revert
96556 (96640 goes on top of 96556), but it also looks like with
both of them applied the breakage happens even earlier. The
symptom of the 96556 miscompile is the following crash:
llvm[3]: Compiling AlphaISelLowering.cpp for Release build
cc1plus: /home/duncan/tmp/tmp/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp:4982: void llvm::SelectionDAG::ReplaceAllUsesWith(llvm::SDNode*, llvm::SDNode*, llvm::SelectionDAG::DAGUpdateListener*): Assertion `(!From->hasAnyUseOfValue(i) || From->getValueType(i) == To->getValueType(i)) && "Cannot use this version of ReplaceAllUsesWith!"' failed.
Stack dump:
0. Running pass 'X86 DAG->DAG Instruction Selection' on function '@_ZN4llvm19AlphaTargetLowering14LowerOperationENS_7SDValueERNS_12SelectionDAGE'
g++: Internal error: Aborted (program cc1plus)
This occurs when building LLVM using LLVM built by LLVM (via
dragonegg). Probably LLVM has miscompiled itself, though it
may have miscompiled GCC and/or dragonegg itself: at this point
of the self-host build, all of GCC, LLVM and dragonegg were built
using LLVM. Unfortunately this kind of thing is extremely hard
to debug, and while I did rummage around a bit I didn't find any
smoking guns, aka obviously miscompiled code.
Found by bisection.
r96556 | evancheng | 2010-02-18 03:13:50 +0100 (Thu, 18 Feb 2010) | 5 lines
Some dag combiner goodness:
Transform br (xor (x, y)) -> br (x != y)
Transform br (xor (xor (x,y), 1)) -> br (x == y)
Also normalize (and (X, 1) == / != 1 -> (and (X, 1)) != / == 0 to match to "test on x86" and "tst on arm"
r96640 | evancheng | 2010-02-19 01:34:39 +0100 (Fri, 19 Feb 2010) | 16 lines
Transform (xor (setcc), (setcc)) == / != 1 to
(xor (setcc), (setcc)) != / == 1.
e.g. On x86_64
%0 = icmp eq i32 %x, 0
%1 = icmp eq i32 %y, 0
%2 = xor i1 %1, %0
br i1 %2, label %bb, label %return
=>
testl %edi, %edi
sete %al
testl %esi, %esi
sete %cl
cmpb %al, %cl
je LBB1_2
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96672 91177308-0d34-0410-b5e6-96231b3b80d8
strides in foreign loops. This helps locate reuse opportunities
with existing induction variables in foreign loops and reduces
the need for inserting new ones. This fixes rdar://7657764.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96629 91177308-0d34-0410-b5e6-96231b3b80d8
which is not always true if the mask contains undefs. Modified it to return
the first non undef value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96621 91177308-0d34-0410-b5e6-96231b3b80d8
Moderate the weight given to very small intervals.
The spill weight given to new intervals created when spilling was not
normalized in the same way as the original spill weights calculated by
CalcSpillWeights. That meant that restored registers would tend to hang around
because they had a much higher spill weight that unspilled registers.
This improves the runtime of a few tests by up to 10%, and there are no
significant regressions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96613 91177308-0d34-0410-b5e6-96231b3b80d8
checking whether AnalyzeBranch disagrees with the CFG
directly, rather than looking for EH_LABEL instructions.
EH_LABEL instructions aren't always at the end of the
block, due to FP_REG_KILL and other things. This fixes
an infinite loop compiling MultiSource/Benchmarks/Bullet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96611 91177308-0d34-0410-b5e6-96231b3b80d8
--enable-shared configure flag to have the tools linked shared. (2.7svn is just
$(LLVMVersion) so it'll change to "2.7" in the release.) Always link the
example programs shared to test that the shared library keeps working.
On my mac laptop, Debug libLLVM2.7svn.dylib is 39MB, and opt (for example) is
16M static vs 440K shared.
Two things are less than ideal here:
1) The library doesn't include any version information. Since we expect to break
the ABI with every release, this shouldn't be much of a problem. If we do
release a compatible 2.7.1, we may be able to hack its library to work with
binaries compiled against 2.7.0, or we can just ask them to recompile. I'm
hoping to get a real packaging expert to look at this for the 2.8 release.
2) llvm-config doesn't yet have an option to print link options for the shared
library. I'll add this as a subsequent patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96559 91177308-0d34-0410-b5e6-96231b3b80d8