The original commit was too aggressive about marking LibCalls as AAPCS. The
libcalls contain libc/libm/libunwind calls which are not AAPCS, but C.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280833 91177308-0d34-0410-b5e6-96231b3b80d8
When branching to a block that immediately tail calls, it is possible to fold
the call directly into the branch if the call is direct and there is no stack
adjustment, saving one byte.
Example:
define void @f(i32 %x, i32 %y) {
entry:
%p = icmp eq i32 %x, %y
br i1 %p, label %bb1, label %bb2
bb1:
tail call void @foo()
ret void
bb2:
tail call void @bar()
ret void
}
before:
f:
movl 4(%esp), %eax
cmpl 8(%esp), %eax
jne .LBB0_2
jmp foo
.LBB0_2:
jmp bar
after:
f:
movl 4(%esp), %eax
cmpl 8(%esp), %eax
jne bar
.LBB0_1:
jmp foo
I don't expect any significant size savings from this (on a Clang bootstrap I
saw 288 bytes), but it does make the code a little tighter.
This patch only does 32-bit, but 64-bit would work similarly.
Differential Revision: https://reviews.llvm.org/D24108
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280832 91177308-0d34-0410-b5e6-96231b3b80d8
OpenCL kernels have hidden kernel arguments for global offset and printf buffer. For consistency, these hidden argument should be included in the runtime metadata. Also updated kernel argument kind metadata.
Differential Revision: https://reviews.llvm.org/D23424
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280829 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Previously we were trying to represent this with the "contains" list of
the .cv_inline_linetable directive, which was not enough information.
Now we directly represent the chain of inlined call sites, so we know
what location to emit when we encounter a .cv_loc directive of an inner
inlined call site while emitting the line table of an outer function or
inlined call site. Fixes PR29146.
Also fixes PR29147, where we would crash when .cv_loc directives crossed
sections. Now we write down the section of the first .cv_loc directive,
and emit an error if any other .cv_loc directive for that function is in
a different section.
Also fixes issues with discontiguous inlined source locations, like in
this example:
volatile int unlikely_cond = 0;
extern void __declspec(noreturn) abort();
__forceinline void f() {
if (!unlikely_cond) abort();
}
int main() {
unlikely_cond = 0;
f();
unlikely_cond = 0;
}
Previously our tables gave bad location information for the 'abort'
call, and the debugger wouldn't snow the inlined stack frame for 'f'.
It is important to emit good line tables for this code pattern, because
it comes up whenever an asan bug occurs in an inlined function. The
__asan_report* stubs are generally placed after the normal function
epilogue, leading to discontiguous regions of inlined code.
Reviewers: majnemer, amccarth
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24014
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280822 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
LSV replaces multiple adjacent loads with one vectorized load and a
bunch of extractelement instructions. This patch makes the
extractelement instructions' names match those of the original loads,
for (hopefully) improved readability.
Reviewers: asbirlea, tstellarAMD
Subscribers: arsenm, mzolotukhin
Differential Revision: https://reviews.llvm.org/D23748
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280818 91177308-0d34-0410-b5e6-96231b3b80d8
Two tests have been merged together, regenerated and then moved to
a more appropriate directory. No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280814 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This saves a library call to __aeabi_uidivmod. However, the
processor must feature hardware division in order to benefit from
the transformation.
Reviewers: scott-0, jmolloy, compnerd, rengolin
Subscribers: t.p.northover, compnerd, aemerson, rengolin, samparker, llvm-commits
Differential Revision: https://reviews.llvm.org/D24133
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280808 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a similar issue to the one already fixed by r280804
(revieved in D24256). Revision 280804 fixed the problem with unsafe dyn_casts
in the extrq/extrqi combining logic. However, it turns out that even the
insertq/insertqi logic was affected by the same problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280807 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes an assertion failure caused by unsafe dynamic casts on the
constant operands of sse4a intrinsic calls to extrq/extrqi
The combine logic that simplifies sse4a extrq/extrqi intrinsic calls currently
checks if the input operands are constants. Internally, that logic relies on
dyn_casts of values returned by calls to method Constant::getAggregateElement.
However, method getAggregateElemet may return nullptr if the constant element
cannot be retrieved. So, all the dyn_casts can potentially fail. This is what
happens for example if a constexpr value is passed in input to an extrq/extrqi
intrinsic call.
This patch fixes the problem by using a dyn_cast_or_null (instead of a simple
dyn_cast) on the result of each call to Constant::getAggregateElement.
Added reproducible test cases to x86-sse4a.ll.
Differential Revision: https://reviews.llvm.org/D24256
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280804 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The o32 ABI doesn't not support the TImode helpers. For the time being,
disable just the shift libcalls as they break recursive builds on MIPS.
Reviewers: sdardis
Subscribers: llvm-commits, sdardis
Differential Revision: https://reviews.llvm.org/D24259
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280798 91177308-0d34-0410-b5e6-96231b3b80d8
I should have realised this the first time around, but if we're avoiding sinking stores where the operands come from allocas so they don't create selects, we also have to do the same for loads because SROA will be just as defective looking at loads of selected addresses as stores.
Fixes PR30188 (again).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280792 91177308-0d34-0410-b5e6-96231b3b80d8
PR30292 showed a case where our PHI checking wasn't correct. We were checking that all values were used by the same PHI before deciding to sink, but we weren't checking that the incoming values for that PHI were what we expected. As a result, we had to bail out after block splitting which caused us to never reach a steady state in SimplifyCFG.
Fixes PR30292.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280790 91177308-0d34-0410-b5e6-96231b3b80d8
When folding an addi into a memory access that can take an immediate offset, we
were implicitly assuming that the existing offset was zero. This was incorrect.
If we're dealing with an addi with a plain constant, we can add it to the
existing offset (assuming that doesn't overflow the immediate, etc.), but if we
have anything else (i.e. something that will become a relocation expression),
we'll go back to requiring the existing immediate offset to be zero (because we
don't know what the requirements on that relocation expression might be - e.g.
maybe it is paired with some addis in some relevant way).
On the other hand, when dealing with a plain addi with a regular constant
immediate, the alignment restrictions (from the TOC base pointer, etc.) are
irrelevant.
I've added the test case from PR30280, which demonstrated the bug, but also
demonstrates a missed optimization opportunity (i.e. we don't need the memory
accesses at all).
Fixes PR30280.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280789 91177308-0d34-0410-b5e6-96231b3b80d8
The previous commit (r280368 - https://reviews.llvm.org/D23313) does not cover AVX-512F, KNL set.
FNEG(x) operation is lowered to (bitcast (vpxor (bitcast x), (bitcast constfp(0x80000000))).
It happens because FP XOR is not supported for 512-bit data types on KNL and we use integer XOR instead.
I added pattern match for integer XOR.
Differential Revision: https://reviews.llvm.org/D24221
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280785 91177308-0d34-0410-b5e6-96231b3b80d8
This was originally submitted in r280549, and reverted in r280577
due to breaking one MSVC buildbot. The issue is that MSVC 2013
doesn't synthesize move constructors. So even though i was
writing std::move(A) it was copying it, leading to a bogus ArrayRef.
The solution here is to simply remove the std::vector<> from the
type, since it is unused and unnecessary. This way the ArrayRef
continues to point into the original memory backing the CVType.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280769 91177308-0d34-0410-b5e6-96231b3b80d8
I might have called this "r246507, the sequel". It fixes the same issue, as the
issue has cropped up in a few more places. The underlying problem is that
isSetCCEquivalent can pick up select_cc nodes with a result type that is not
legal for a setcc node to have, and if we use that type to create new setcc
nodes, nothing fixes that (and so we've violated the contract that the
infrastructure has with the backend regarding setcc node types).
Fixes PR30276.
For convenience, here's the commit message from r246507, which explains the
problem is greater detail:
[DAGCombine] Fixup SETCC legality checking
SETCC is one of those special node types for which operation actions (legality,
etc.) is keyed off of an operand type, not the node's value type. This makes
sense because the value type of a legal SETCC node is determined by its
operands' value type (via the TLI function getSetCCResultType). When the
SDAGBuilder creates SETCC nodes, it either creates them with an MVT::i1 value
type, or directly with the value type provided by TLI.getSetCCResultType.
The first problem being fixed here is that DAGCombine had several places
querying TLI.isOperationLegal on SETCC, but providing the return of
getSetCCResultType, instead of the operand type directly. This does not mean
what the author thought, and "luckily", most in-tree targets have SETCC with
Custom lowering, instead of marking them Legal, so these checks return false
anyway.
The second problem being fixed here is that two of the DAGCombines could create
SETCC nodes with arbitrary (integer) value types; specifically, those that
would simplify:
(setcc a, b, op1) and|or (setcc a, b, op2) -> setcc a, b, op3
(which is possible for some combinations of (op1, op2))
If the operands of the and|or node are actual setcc nodes, then this is not an
issue (because the and|or must share the same type), but, the relevant code in
DAGCombiner::visitANDLike and DAGCombiner::visitORLike actually calls
DAGCombiner::isSetCCEquivalent on each operand, and that function will
recognise setcc-like select_cc nodes with other return types. And, thus, when
creating new SETCC nodes, we need to be careful to respect the value-type
constraint. This is even true before type legalization, because it is quite
possible for the SELECT_CC node to have a legal type that does not happen to
match the corresponding TLI.getSetCCResultType type.
To be explicit, there is nothing that later fixes the value types of SETCC
nodes (if the type is legal, but does not happen to match
TLI.getSetCCResultType). Creating SETCCs with an MVT::i1 value type seems to
work only because, either MVT::i1 is not legal, or it is what
TLI.getSetCCResultType returns if it is legal. Fixing that is a larger change,
however. For the time being, restrict the relevant transformations to produce
only SETCC nodes with a value type matching TLI.getSetCCResultType (or MVT::i1
prior to type legalization).
Fixes PR24636.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280767 91177308-0d34-0410-b5e6-96231b3b80d8
- Implemented amdgpu-flat-work-group-size attribute
- Implemented amdgpu-num-active-waves-per-eu attribute
- Implemented amdgpu-num-sgpr attribute
- Implemented amdgpu-num-vgpr attribute
- Dynamic LDS constraints are in a separate patch
Patch by Tom Stellard and Konstantin Zhuravlyov
Differential Revision: https://reviews.llvm.org/D21562
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280747 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a copy of the demangler in libcxxabi.
The code also has no dependencies on anything else in LLVM. To enforce
that I added it as another library. That way a BUILD_SHARED_LIBS will
fail if anyone adds an use of StringRef for example.
The no llvm dependency combined with the fact that this has to build
on linux, OS X and Windows required a few changes to the code. In
particular:
No constexpr.
No alignas
On OS X at least this library has only one global symbol:
__ZN4llvm16itanium_demangleEPKcPcPmPi
My current plan is:
Commit something like this
Change lld to use it
Change lldb to use it as the fallback
Add a few #ifdefs so that exactly the same file can be used in
libcxxabi to export abi::__cxa_demangle.
Once the fast demangler in lldb can handle any names this
implementation can be replaced with it and we will have the one true
demangler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280732 91177308-0d34-0410-b5e6-96231b3b80d8
If we are extracting a subvector that has just been inserted then we should just use the original inserted subvector.
This has come up in certain several x86 shuffle lowering cases where we are crossing 128-bit lanes.
Differential Revision: https://reviews.llvm.org/D24254
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280715 91177308-0d34-0410-b5e6-96231b3b80d8
Currently the pass updates branch weights in the IR if the function has
any PGO info (entry frequency is set). However we could still have
regions of the CFG that does not have branch weights collected (e.g. a
cold region). In this case we'd use static estimates. Since static
estimates for branches are determined independently, they are
inconsistent. Updating them can "randomly" inflate block frequencies.
I've run into this in a completely cold loop of h264ref from
SPEC. -Rpass-with-hotness showed the loop to be completely cold during
inlining (before JT) but completely hot during vectorization (after JT).
The new testcase demonstrate the problem. We check array elements
against 1, 2 and 3 in a loop. The check against 3 is the loop-exiting
check. The block names should be self-explanatory.
In this example, jump threading incorrectly updates the weight of the
loop-exiting branch to 0, drastically inflating the frequency of the
loop (in the range of billions).
There is no run-time profile info for edges inside the loop, so branch
probabilities are estimated. These are the resulting branch and block
frequencies for the loop body:
check_1 (16)
(8) / |
eq_1 | (8)
\ |
check_2 (16)
(8) / |
eq_2 | (8)
\ |
check_3 (16)
(1) / |
(loop exit) | (15)
|
(back edge)
First we thread eq_1 -> check_2 to check_3. Frequencies are updated to
remove the frequency of eq_1 from check_2 and then from the false edge
leaving check_2. Changed frequencies are highlighted with * *:
check_1 (16)
(8) / |
eq_1~ | (8)
/ |
/ check_2 (*8*)
/ (8) / |
\ eq_2 | (*0*)
\ \ |
` --- check_3 (16)
(1) / |
(loop exit) | (15)
|
(back edge)
Next we thread eq_1 -> check_3 and eq_2 -> check_3 to check_1 as new
back edges. Frequencies are updated to remove the frequency of eq_1 and
eq_3 from check_3 and then the false edge leaving check_3 (changed
frequencies are highlighted with * *):
check_1 (16)
(8) / |
eq_1~ | (8)
/ |
/ check_2 (*8*)
/ (8) / |
/-- eq_2~ | (*0*)
(back edge) |
check_3 (*0*)
(*0*) / |
(loop exit) | (*0*)
|
(back edge)
As a result, the loop exit edge ends up with 0 frequency which in turn makes
the loop header to have maximum frequency.
There are a few potential problems here:
1. The profile data seems odd. There is a single profile sample of the
loop being entered. On the other hand, there are no weights inside the
loop.
2. Based on static estimation we shouldn't set edges to "extreme"
values, i.e. extremely likely or unlikely.
3. We shouldn't create profile metadata that is calculated from static
estimation. I am not sure what policy is but it seems to make sense to
treat profile metadata as something that is known to originate from
profiling. Estimated probabilities should only be reflected in BPI/BFI.
Any one of these would probably fix the immediate problem. I went for 3
because I think it's a good policy to have and added a FIXME about 2.
Differential Revision: https://reviews.llvm.org/D24118
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280713 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM PR/29052 highlighted that FastISel for MIPS attempted to lower
arguments assuming that it was using the paired 32bit registers to
perform operations for f64. This mode of operation is not supported
for MIPSR6.
This patch resolves the reported issue by adding additional checks
for unsupported floating point unit configuration.
Thanks to mike.k for reporting this issue!
Reviewers: seanbruno, vkalintiris
Differential Review: https://reviews.llvm.org/D23795
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280706 91177308-0d34-0410-b5e6-96231b3b80d8
We need to bitcast the index operand to a floating point type so that it matches the result type. If not then the passthru part of the DAG will be a bitcast from the index's original type to the destination type. This makes it very difficult to match. The other option would be to add 5 sets of patterns for every other possible type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280696 91177308-0d34-0410-b5e6-96231b3b80d8
It doesn't work because we're looking for a bitcast from the v4i32 index operand to v4f32 for the passthru part of the DAG. But since the index is bitcasted from v2i64 and bitcasts fold, we actually have a bitcast from v2i64 to v4f32 in the passthru part of the DAG.
Taken from optimized output from clang's test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280695 91177308-0d34-0410-b5e6-96231b3b80d8
This is a Windows ARM specific issue. If the code path in the if conversion
ends up using a relocation which will form a IMAGE_REL_ARM_MOV32T, we end up
with a bundle to ensure that the mov.w/mov.t pair is not split up. This is
normally fine, however, if the branch is also predicated, then we end up trying
to predicate the bundle.
For now, report a bundle as being unpredicatable. Although this is false, this
would trigger a failure case previously anyways, so this is no worse. That is,
there should not be any code which would previously have been if converted and
predicated which would not be now.
Under certain circumstances, it may be possible to "predicate the bundle". This
would require scanning all bundle instructions, and ensure that the bundle
contains only predicatable instructions, and converting the bundle into an IT
block sequence. If the bundle is larger than the maximal IT block length (4
instructions), it would require materializing multiple IT blocks from the single
bundle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280689 91177308-0d34-0410-b5e6-96231b3b80d8
All of the builtins are designed to be invoked with ARM AAPCS CC even on ARM
AAPCS VFP CC hosts. Tweak the default initialisation to ARM AAPCS CC rather
than C CC for ARM/thumb targets.
The changes to the tests are necessary to ensure that the calling convention for
the lowered library calls are honoured. Furthermore, these adjustments cause
certain branch invocations to change to branch-and-link since the returned value
needs to be moved across registers (d0 -> r0, r1).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280683 91177308-0d34-0410-b5e6-96231b3b80d8
The script (utils/update_test_checks.py) seems to have problems
with variable names that start with the same string.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280679 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Move early uses of spilled variables after CoroBegin.
For example, if a parameter had address taken, we may end up with the code
like:
define @f(i32 %n) {
%n.addr = alloca i32
store %n, %n.addr
...
call @coro.begin
This patch fixes the problem by moving uses of spilled variables after CoroBegin.
Reviewers: majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D24234
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280678 91177308-0d34-0410-b5e6-96231b3b80d8
This test code previously caused a failure in the module verifier,
because SimplifyCFG created this invalid instruction, which tries to
take the address of inline asm:
%.sink = select i1 %1, i64 ()* asm "mov $0, #1", "=r", i64 ()* asm %"mov $0, #2", "=r"
This has been fixed recently, presumably by James Molloy's patches that
re-wrote and changed parts of SimplifyCFG, so this patch just adds a
regression test for it.
Differential Revision: https://reviews.llvm.org/D24231
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280660 91177308-0d34-0410-b5e6-96231b3b80d8