Add physical register defs to instructions used from stackified
instructions to prevent them from being scheduled into the middle of
a stack sequence. This is a conservative measure which may be loosened
in the future.
Differential Revision: http://reviews.llvm.org/D15252
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254811 91177308-0d34-0410-b5e6-96231b3b80d8
When the notion of target specific memory intrinsics was introduced to EarlyCSE, the commit confused the notions of volatile and simple memory access. Since I'm about to start working on this area, cleanup the naming so that patches aren't horribly confusing. Note that the actual implementation was always bailing if the load or store wasn't simple.
Reminder:
- "volatile" - C++ volatile, can't remove any memory operations, but in principal unordered
- "ordered" - imposes ordering constraints on other nearby memory operations
- "atomic" - can't be split or sheared. In LLVM terms, all "ordered" operations are also atomic so the predicate "isAtomic" is often used.
- "simple" - a load which is none of the above. These are normal loads and what most of the optimizer works with.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254805 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions are not supported by all CPUs in 64-bit mode. Emitting them
causes Chromium to crash on start-up for users with such chips.
(GCC puts these instructions behind -msahf on 64-bit for the same reason.)
This patch adds FeatureLAHFSAHF, enables it by default for 32-bit targets
and modern CPUs, and changes X86InstrInfo::copyPhysReg back to the lowering
from before r244503 when the instructions are not available.
Differential Revision: http://reviews.llvm.org/D15240
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254793 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a new target-independent calling convention for C++ TLS
access functions. It aims to minimize overhead in the caller by perserving as
many registers as possible.
The target-specific implementation for X86-64 is defined as following:
Arguments are passed as for the default C calling convention
The same applies for the return value(s)
The callee preserves all GPRs - except RAX and RDI
The access function makes C-style TLS function calls in the entry and exit
block, C-style TLS functions save a lot more registers than normal calls.
The added calling convention ties into the existing implementation of the
C-style TLS functions, so we can't simply use existing calling conventions
such as preserve_mostcc.
rdar://9001553
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254737 91177308-0d34-0410-b5e6-96231b3b80d8
Since BuildMI() automatically adds the implicit operands for a new instruction,
adding the old instructions CC operand resulted in that there were two CC imp-def
operands, where only one was marked as dead. This caused buildSchedGraph() to
miss dependencies on the CC reg.
Review by Ulrich Weigand
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254714 91177308-0d34-0410-b5e6-96231b3b80d8
Add new x86 pass which replaces address calculations in load or store instructions with def register of existing LEA (must be in the same basic block), if the LEA calculates address that differs only by a displacement. Works only with -Os or -Oz.
Differential Revision: http://reviews.llvm.org/D13294
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254712 91177308-0d34-0410-b5e6-96231b3b80d8
with its source instead of forcing the values on GPRs.
This improves the lowering of vector code when such bitcasts happen in the
middle of vector computations.
rdar://problem/23691584
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254684 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
computeRegisterLiveness and analyzePhysReg are currently getting
confused about liveness in some cases, breaking copyPhysReg's
calculation of whether AX is dead in some cases. Work around this issue
temporarily by assuming that AX is always live.
See detail in: https://llvm.org/bugs/show_bug.cgi?id=25033#c7
And associated bugs PR24535 PR25033 PR24991 PR24992 PR25201.
This workaround makes the code correct but slightly inefficient, but it
seems to confuse the machine instr verifier which now things EAX was
undefined in some cases where it's being conservatively saved /
restored.
Reviewers: majnemer, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15198
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254680 91177308-0d34-0410-b5e6-96231b3b80d8
When a block has no terminator instructions, getFirstTerminator() returns
end(), which can't be used in dominance checks. Check dominance for phi
operands separately.
Also, remove some bits from WebAssemblyRegStackify.cpp that were causing
trouble on the same testcase; they were left behind from an earlier
experiment.
Differential Revision: http://reviews.llvm.org/D15210
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254662 91177308-0d34-0410-b5e6-96231b3b80d8
Almost all these changes are conditioned and only apply to the new
x86-64 f128 type configuration, which will be enabled in a follow up
patch. They are required together to make new f128 work. If there is
any error, we should fix or revert them as a whole.
These changes should have no impact to current configurations.
* Relax type legalization checks to accept new f128 type configuration,
whose TypeAction is TypeSoftenFloat, not TypeLegal, but also has
TLI.isTypeLegal true.
* Relax GetSoftenedFloat to return in some cases f128 type SDValue,
which is TLI.isTypeLegal but not "softened" to i128 node.
* Allow customized FABS, FNEG, FCOPYSIGN on new f128 type configuration,
to generate optimized bitwise operators for libm functions.
* Enhance related Lower* functions to handle f128 type.
* Enhance DAGTypeLegalizer::run, SoftenFloatResult, and related functions
to keep new f128 type in register, and convert f128 operators to library calls.
* Fix Combiner, Emitter, Legalizer routines that did not handle f128 type.
* Add ExpandConstant to handle i128 constants, ExpandNode
to handle ISD::Constant node.
* Add one more parameter to getCommonSubClass and firstCommonClass,
to guarantee that returned common sub class will contain the specified
simple value type.
This extra parameter is used by EmitCopyFromReg in InstrEmitter.cpp.
* Fix infinite loop in getTypeLegalizationCost when f128 is the value type.
* Fix printOperand to handle null operand.
* Enhance ISD::BITCAST node to handle f128 constant.
* Expand new f128 type for BR_CC, SELECT_CC, SELECT, SETCC nodes.
* Enhance X86AsmPrinter to emit f128 values in comments.
Differential Revision: http://reviews.llvm.org/D15134
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254653 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
These ADJCALLSTACK markers don't generate code, but they keep dynamic
alloca code that calls chkstk out of the prologue.
This slightly pessimizes inalloca calls by preventing some register copy
coalescing, but I can live with that.
Reviewers: qcolombet
Subscribers: hans, llvm-commits
Differential Revision: http://reviews.llvm.org/D15200
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254645 91177308-0d34-0410-b5e6-96231b3b80d8
Currently "<type> ptr <reg name>" treated as <reg name> in MS inline asm, ignoring the "<type> ptr" completely and possibly ignoring the intention of the user.
Fixed llvm to produce an error when encountering "<type> ptr <reg name>" operands.
For example: andpd xmm1,xmmword ptr xmm1 --> andpd xmm1, xmm1
though andpd has 2 possible matching formats - andpd xmm, xmm/m128
Patch by: ziv.izhar@intel.com
Differential Revision: http://reviews.llvm.org/D14607
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254607 91177308-0d34-0410-b5e6-96231b3b80d8
- Add extenders when necessary.
- Handle some basic relocations.
This should fix the failure in tools/clang/test/CodeGenCXX/crash.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254564 91177308-0d34-0410-b5e6-96231b3b80d8
This call should in fact be made by RegScavenger::enterBasicBlock()
called below. The first call does nothing except for triggering UB,
indicated by UBSan (passing nullptr to memset()).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254548 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM ARM is clear that 128-bit loads are only guaranteed to have been atomic
if there has been a corresponding successful stxp. It's less clear for AArch32, so
I'm leaving that alone for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254524 91177308-0d34-0410-b5e6-96231b3b80d8
|9B DD /7| FSTSW m2byte| Valid Valid Store FPU status word at m2byteafter checking for pending unmasked floating-point exceptions.|
|9B DF E0| FSTSW AX| Valid Valid Store FPU status word in AX register after checking for pending unmasked floating-point exceptions.|
|DD /7 |FNSTSW *m2byte| Valid Valid Store FPU status word at m2bytewithout checking for pending unmasked floating-point exceptions.|
|DF E0 |FNSTSW *AX| Valid Valid Store FPU status word in AX register without checking for pending unmasked floating-point exceptions|
m2byte is word register, and therefor instruction operand need to be change from f32mem to i16mem.
Differential Revision: http://reviews.llvm.org/D14953
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254512 91177308-0d34-0410-b5e6-96231b3b80d8