This is an ELF-specific thing that adds SHF_LINK_ORDER to the global's section
pointing to the metadata argument's section. The effect of that is a reverse dependency
between sections for the linker GC.
!associated does not change the behavior of global-dce. The global
may also need to be added to llvm.compiler.used.
Since SHF_LINK_ORDER is per-section, !associated effectively enables
fdata-sections for the affected globals, the same as comdats do.
Differential Revision: https://reviews.llvm.org/D29104
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298157 91177308-0d34-0410-b5e6-96231b3b80d8
With the "wasm32-unknown-unknown-wasm" triple, this allows writing out
simple wasm object files, and is another step in a larger series toward
migrating from ELF to general wasm object support. Note that this code
and the binary format itself is still experimental.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296190 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Some compilers, including MSVC and Clang, allow linker options to be specified in source files. In the legacy LTO API, there is a getLinkerOpts() method that returns linker options for the bitcode module being processed. This change adds that method to the new API, so that the COFF linker can get the right linker options when using the new LTO API.
Reviewers: pcc, ruiu, mehdi_amini, tejohnson
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D29207
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293950 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r290694. It broke sanitizer tests on Win64. I'll
probably bring this back, but the jump tables will just live in .text
like they do for MSVC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290714 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We were already using 32-bit jump table entries, but this was a
consequence of the default PIC model on Win64, and not an intentional
design decision. This patch ensures that we always use 32-bit label
difference jump table entries on Win64 regardless of the PIC model. This
is a good idea because it saves executable size and object file size.
Moving the jump tables to .rdata cleans up the disassembled object code
and reduces the available ROP targets, but it requires adding one more
RIP-relative lea to the code. COFF doesn't have relocations to express
the difference between two arbitrary symbols, so we can't use the jump
table label in the label difference like we do elsewhere.
Fixes PR31488
Reviewers: majnemer, compnerd
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28141
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290694 91177308-0d34-0410-b5e6-96231b3b80d8
This implements execute-only support for ARM code generation, which
prevents the compiler from generating data accesses to code sections.
The following changes are involved:
* Add the CodeGen option "-arm-execute-only" to the ARM code generator.
* Add the clang flag "-mexecute-only" as well as the GCC-compatible
alias "-mpure-code" to enable this option.
* When enabled, literal pools are replaced with MOVW/MOVT instructions,
with VMOV used in addition for floating-point literals. As the MOVT
instruction is required, execute-only support is only available in
Thumb mode for targets supporting ARMv8-M baseline or Thumb2.
* Jump tables are placed in data sections when in execute-only mode.
* The execute-only text section is assigned section ID 0, and is
marked as unreadable with the SHF_ARM_PURECODE flag with symbol 'y'.
This also overrides selection of ELF sections for globals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289784 91177308-0d34-0410-b5e6-96231b3b80d8
No-one actually had a mangler handy when calling this function, and
getSymbol itself went most of the way towards getting its own mangler
(with a local TLOF variable) so forcing all callers to supply one was
just extra complication.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287645 91177308-0d34-0410-b5e6-96231b3b80d8
These functions are about classifying a global which will actually be
emitted, so it does not make sense for them to take a GlobalValue which may
for example be an alias.
Change the Mach-O object writer and the Hexagon, Lanai and MIPS backends to
look through aliases before using TargetLoweringObjectFile interfaces. These
are functional changes but all appear to be bug fixes.
Differential Revision: https://reviews.llvm.org/D25917
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285006 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The original implementation is in r261607, which was reverted in r269726 to accomendate the ProfileSummaryInfo analysis pass. The new implementation:
1. add a new metadata for function section prefix
2. query against ProfileSummaryInfo in CGP to set the correct section prefix for each function
3. output the section prefix set by CGP
Reviewers: davidxl, eraman
Subscribers: vsk, llvm-commits
Differential Revision: https://reviews.llvm.org/D24989
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284533 91177308-0d34-0410-b5e6-96231b3b80d8
TargetMachine," as it's causing sanitizer/memory issues until I
can track down this set.
This reverts commit r284203
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284252 91177308-0d34-0410-b5e6-96231b3b80d8
sink the current behavior into the callers and sink
TargetMachine::getNameWithPrefix into TargetMachine::getSymbol.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284203 91177308-0d34-0410-b5e6-96231b3b80d8
TargetMachine::getNameWithPrefix and inline the result into the singular
caller." and "Remove more guts of TargetMachine::getNameWithPrefix and
migrate one check to the TLOF mach-o version." temporarily until I can
get the whole call migrated out of the TargetMachine as we could hit
places where TLOF isn't valid.
This reverts commits r281981 and r281983.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282028 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, such section would be marked as SHT_PROGBITS which
makes it impossible to use an initialized C variable declaration
to emit an (allocated) ELF note. The new behavior is also consistent
with ELF assembly parser.
Differential Revision: https://reviews.llvm.org/D24692
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282010 91177308-0d34-0410-b5e6-96231b3b80d8
Group" sections while lowering. In particular, for ELF sections this is
useful for creating function-specific groups that get merged into the
same named section.
Also use const Twine& instead of StringRef for the getELF functions
while we're here.
Differential Revision: http://reviews.llvm.org/D21743
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274336 91177308-0d34-0410-b5e6-96231b3b80d8
The main issue here is that the "thumb" flag wasn't set for some of these
sections, making MSVC's link.exe fails to correctly relocate code
against the symbols inside these sections. link.exe could fail for
instance with the "fixup is not aligned for target 'XX'" error. If
linking doesn't fail, the relocation process goes wrong in the end and
invalid code is generated by the linker.
This patch adds Thumb/ARM information so that the right flags are set
on COFF/Windows.
Patch by Adrien Guinet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273880 91177308-0d34-0410-b5e6-96231b3b80d8
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.
This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
the normal rule that the global must have a unique address can be broken without
being observable by the program by performing comparisons against the global's
address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
its own copy of the global if it requires one, and the copy in each linkage unit
must be the same)
- It is a constant or a function (which means that the program cannot observe that
the unique-address rule has been broken by writing to the global)
Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.
See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.
Part of the fix for PR27553.
Differential Revision: http://reviews.llvm.org/D20348
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272709 91177308-0d34-0410-b5e6-96231b3b80d8
Since r207518 they are printed exactly like non-hidden stubs on x86 and
since r207517 on ARM.
This means we can use a single set for all stubs in those platforms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269776 91177308-0d34-0410-b5e6-96231b3b80d8
This code currently relies on static methods in ProfileSummary to determine whether a function is hot or unlikley. I am refactoring the ProfileSummary code and these methods will be removed. As discussed offline, the right way to re-introduce this is to add a pass to annotate functions with unlikely/hot hints and use the hints to determine the prefix here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269726 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This adds a unique ID to the COFF section uniquing map, similar to the
one we have for ELF. The unique id is not currently exposed via the
assembler because we don't have a use case for it yet. Users generally
create .pdata with the .seh_* family of directives, and the assembler
internally needs to produce .pdata and .xdata sections corresponding to
the code section.
The association between .text sections and the assembler-created .xdata
and .pdata sections is maintained as an ID field of MCSectionCOFF. The
CFI-related sections are created with the given unique ID, so if more
code is added to the same text section, we can find and reuse the CFI
sections that were already created.
Reviewers: majnemer, rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19376
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268331 91177308-0d34-0410-b5e6-96231b3b80d8
The relative vtable ABI (PR26723) needs PLT relocations to refer to virtual
functions defined in other DSOs. The unnamed_addr attribute means that the
function's address is not significant, so we're allowed to substitute it
with the address of a PLT entry.
Also includes a bonus feature: addends for COFF image-relative references.
Differential Revision: http://reviews.llvm.org/D17938
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267211 91177308-0d34-0410-b5e6-96231b3b80d8
We supported creating mergeable constant pool entries for smaller
constants but not for 32-byte AVX constants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261584 91177308-0d34-0410-b5e6-96231b3b80d8
COFF doesn't have sections with mergeable contents. Instead, each
constant pool entry ends up in a COMDAT section. The linker, when
choosing between COMDAT sections, doesn't choose the max alignment of
the two sections. You just get whatever alignment was on the section.
If one constant needed a higher alignment in one object file from
another one, then we will get into trouble if the linker chooses the
lower alignment one.
Instead, lets promote the alignment of the constant pool entry to make
sure we don't use an under aligned constant with an instruction which
assumed otherwise.
This fixes PR26680.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261462 91177308-0d34-0410-b5e6-96231b3b80d8
covmap needs to created as non allocatable, but not with
SHT_NOTE. The latter was needed to workaround a problem
of BFD linker with gc, which is no longer needed. (A more
proper longer term fix requires changing FE driver to force
referencing the section using linker script).
Differential Revision: http://reviews.llvm.org/D17309
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261228 91177308-0d34-0410-b5e6-96231b3b80d8
Coverage mapping data is not referenced by runtime, and they won't be dumped
into profile data. There is no need to allocate memory for covmap sections.
A good side effect of this change is that the coverage map data won't be mistakenly
garbage collected by the linker (for Gold linker only, BFD linker has an issue where the a bug is filed).
Tested with clang build with instrumentation and -fcoverage-mapping and linker GC. The size of
covmap section is ~17.6M so the text segment size will be reduced by this amount with this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257781 91177308-0d34-0410-b5e6-96231b3b80d8
If a section is rw, it is irrelevant if the dynamic linker will write to
it or not.
It looks like llvm implemented this because gcc was doing it. It looks
like gcc implemented this in the hope that it would put all the
relocated items close together and speed up the dynamic linker.
There are two problem with this:
* It doesn't work. Both bfd and gold will map .data.rel to .data and
concatenate the input sections in the order they are seen.
* If we want a feature like that, it can be implemented directly in the
linker since it knowns where the dynamic relocations are.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253436 91177308-0d34-0410-b5e6-96231b3b80d8
The way prelink used to work was
* The compiler decides if a given section only has relocations that
are know to point to the same DSO. If so, it names it
.data.rel.ro.local<something>.
* The static linker puts all of these together.
* The prelinker program assigns addresses to each library and resolves
the local relocations.
There are many problems with this:
* It is incompatible with address space randomization.
* The information passed by the compiler is redundant. The linker
knows if a given relocation is in the same DSO or not. If could sort
by that if so desired.
* There are newer ways of speeding up DSO (gnu hash for example).
* Even if we want to implement this again in the compiler, the previous
implementation is pretty broken. It talks about relocations that are
"resolved by the static linker". If they are resolved, there are none
left for the prelinker. What one needs to track is if an expression
will require only dynamic relocations that point to the same DSO.
At this point it looks like the prelinker is an historical curiosity.
For example, fedora has retired it because it failed to build for two
releases
(http://pkgs.fedoraproject.org/cgit/prelink.git/commit/?id=eb43100a8331d91c801ee3dcdb0a0bb9babfdc1f)
This patch removes support for it. That is, it stops printing the
".local" sections.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253280 91177308-0d34-0410-b5e6-96231b3b80d8
A profile of an LTO link of Chrome revealed that we were spending some
~30-50% of execution time in the function Constant::getRelocationInfo(),
which is called from TargetLoweringObjectFile::getKindForGlobal() and in turn
from TargetMachine::getNameWithPrefix().
It turns out that we only need the result of getKindForGlobal() when
targeting Mach-O, so this change moves the relevant part of the logic to
TargetLoweringObjectFileMachO.
NFCI.
Differential Revision: http://reviews.llvm.org/D14168
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252014 91177308-0d34-0410-b5e6-96231b3b80d8
This prevents MC clients from getting COFF.h, which conflicts with
winnt.h macros. Also a minor IWYU cleanup. Now the only public headers
including COFF.h are in Object, and they actually need it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246784 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11079
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242385 91177308-0d34-0410-b5e6-96231b3b80d8
It is mandatory to specify a comdat in order to receive comdat semantics
for a symbol. We were previously getting this wrong in -function-sections
mode; linker-weak symbols were being emitted in a selectany comdat. This
change causes such symbols to use a noduplicates comdat instead, fixing
the inconsistency.
Also correct an inaccuracy in the docs.
Differential Revision: http://reviews.llvm.org/D10828
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241103 91177308-0d34-0410-b5e6-96231b3b80d8
This change unifies how LTOModule and the backend obtain linker flags
for globals: via a new TargetLoweringObjectFile member function named
emitLinkerFlagsForGlobal. A new function LTOModule::getLinkerOpts() returns
the list of linker flags as a single concatenated string.
This change affects the C libLTO API: the function lto_module_get_*deplibs now
exposes an empty list, and lto_module_get_*linkeropts exposes a single element
which combines the contents of all observed flags. libLTO should never have
tried to parse the linker flags; it is the linker's job to do so. Because
linkers will need to be able to parse flags in regular object files, it
makes little sense for libLTO to have a redundant mechanism for doing so.
The new API is compatible with the old one. It is valid for a user to specify
multiple linker flags in a single pragma directive like this:
#pragma comment(linker, "/defaultlib:foo /defaultlib:bar")
The previous implementation would not have exposed
either flag via lto_module_get_*deplibs (as the test in
TargetLoweringObjectFileCOFF::getDepLibFromLinkerOpt was case sensitive)
and would have exposed "/defaultlib:foo /defaultlib:bar" as a single flag via
lto_module_get_*linkeropts. This may have been a bug in the implementation,
but it does give us a chance to fix the interface.
Differential Revision: http://reviews.llvm.org/D10548
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241010 91177308-0d34-0410-b5e6-96231b3b80d8
This create a MCSymbolELF class and moves SymbolSize since only ELF
needs a size expression.
This reduces the size of MCSymbol from 56 to 48 bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238801 91177308-0d34-0410-b5e6-96231b3b80d8
This starts merging MCSection and MCSectionData.
There are a few issues with the current split between MCSection and
MCSectionData.
* It optimizes the the not as important case. We want the production
of .o files to be really fast, but the split puts the information used
for .o emission in a separate data structure.
* The ELF/COFF/MachO hierarchy is not represented in MCSectionData,
leading to some ad-hoc ways to represent the various flags.
* It makes it harder to remember where each item is.
The attached patch starts merging the two by moving the alignment from
MCSectionData to MCSection.
Most of the patch is actually just dropping 'const', since
MCSectionData is mutable, but MCSection was not.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237936 91177308-0d34-0410-b5e6-96231b3b80d8
This allows the compiler/assembly programmer to switch back to a
section. This in turn fixes the bootstrap failure on powerpc (tested
on gcc110) without changing the ppc codegen at all.
I will try to cleanup the various getELFSection overloads in a followup patch.
Just using a default argument now would lead to ambiguities.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234099 91177308-0d34-0410-b5e6-96231b3b80d8