Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223802 91177308-0d34-0410-b5e6-96231b3b80d8
When a loop gets bundled up, its outgoing edges are quite large, and can
just barely overflow 64-bits. If one successor has multiple incoming
edges -- and that successor is getting all the incoming mass --
combining just its edges can overflow. Handle that by saturating rather
than asserting.
This fixes PR21622.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223500 91177308-0d34-0410-b5e6-96231b3b80d8
Reapply r223347, with a fix to not crash on uninserted instructions (or more
precisely, instructions in uninserted blocks). bugpoint was able to reduce the
test case somewhat, but it is still somewhat large (and relies on setting
things up to be simplified during inlining), so I've not included it here.
Nevertheless, it is clear what is going on and why.
Original commit message:
Restrict somewhat the memory-allocation pointer cmp opt from r223093
Based on review comments from Richard Smith, restrict this optimization from
applying to globals that might resolve lazily to other dynamically-loaded
modules, and also from dynamic allocas (which might be transformed into malloc
calls). In short, take extra care that the compared-to pointer is really
simultaneously live with the memory allocation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223371 91177308-0d34-0410-b5e6-96231b3b80d8
I'm recommiting the codegen part of the patch.
The vectorizer part will be send to review again.
Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223348 91177308-0d34-0410-b5e6-96231b3b80d8
Based on review comments from Richard Smith, restrict this optimization from
applying to globals that might resolve lazily to other dynamically-loaded
modules, and also from dynamic allocas (which might be transformed into malloc
calls). In short, take extra care that the compared-to pointer is really
simultaneously live with the memory allocation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223347 91177308-0d34-0410-b5e6-96231b3b80d8
System memory allocation functions, which are identified at the IR level by the
noalias attribute on the return value, must return a pointer into a memory region
disjoint from any other memory accessible to the caller. We can use this
property to simplify pointer comparisons between allocated memory and local
stack addresses and the addresses of global variables. Neither the stack nor
global variables can overlap with the region used by the memory allocator.
Fixes PR21556.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223093 91177308-0d34-0410-b5e6-96231b3b80d8
The statepoint intrinsics are intended to enable precise root tracking through the compiler as to support garbage collectors of all types. The addition of the statepoint intrinsics to LLVM should have no impact on the compilation of any program which does not contain them. There are no side tables created, no extra metadata, and no inhibited optimizations.
A statepoint works by transforming a call site (or safepoint poll site) into an explicit relocation operation. It is the frontend's responsibility (or eventually the safepoint insertion pass we've developed, but that's not part of this patch series) to ensure that any live pointer to a GC object is correctly added to the statepoint and explicitly relocated. The relocated value is just a normal SSA value (as seen by the optimizer), so merges of relocated and unrelocated values are just normal phis. The explicit relocation operation, the fact the statepoint is assumed to clobber all memory, and the optimizers standard semantics ensure that the relocations flow through IR optimizations correctly.
This is the first patch in a small series. This patch contains only the IR parts; the documentation and backend support will be following separately. The entire series can be seen as one combined whole in http://reviews.llvm.org/D5683.
Reviewed by: atrick, ributzka
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223078 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot. I'll respond to the commit on the
list with a reproduction of one of the failures.
Conflicts:
lib/Target/X86/X86TargetTransformInfo.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222936 91177308-0d34-0410-b5e6-96231b3b80d8
This restores our ability to optimize:
(X & C) ? X & ~C : X into X & ~C
(X & C) ? X : X & ~C into X
(X & C) ? X | C : X into X
(X & C) ? X : X | C into X | C
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222868 91177308-0d34-0410-b5e6-96231b3b80d8
If solveBlockValue() needs results from predecessors that are not already
computed, it returns false with the intention of resuming when the dependencies
have been resolved. However, the computation would never be resumed since an
'overdefined' result had been placed in the cache, preventing any further
computation.
The point of placing the 'overdefined' result in the cache seems to have been
to break cycles, but we can check for that when inserting work items in the
BlockValue stack instead. This makes the "stop and resume" mechanism of
solveBlockValue() work as intended, unlocking more analysis.
Using this patch shaves 120 KB off a 64-bit Chromium build on Linux.
I benchmarked compiling bzip2.c at -O2 but couldn't measure any difference in
compile time.
Tests by Jiangning Liu from r215343 / PR21238, Pete Cooper, and me.
Differential Revision: http://reviews.llvm.org/D6397
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222768 91177308-0d34-0410-b5e6-96231b3b80d8
clearly only exactly equal width ptrtoint and inttoptr casts are no-op
casts, it says so right there in the langref. Make the code agree.
Original log from r220277:
Teach the load analysis to allow finding available values which require
inttoptr or ptrtoint cast provided there is datalayout available.
Eventually, the datalayout can just be required but in practice it will
always be there today.
To go with the ability to expose available values requiring a ptrtoint
or inttoptr cast, helpers are added to perform one of these three casts.
These smarts are necessary to finish canonicalizing loads and stores to
the operational type requirements without regressing fundamental
combines.
I've added some test cases. These should actually improve as the load
combining and store combining improves, but they may fundamentally be
highlighting some missing combines for select in addition to exercising
the specific added logic to load analysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222739 91177308-0d34-0410-b5e6-96231b3b80d8
This handles cases where we are comparing a masked value against itself.
The analysis could be further improved by making it recursive but such
expense is not currently justified.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222716 91177308-0d34-0410-b5e6-96231b3b80d8
We were matching against the assume intrinsic in every check. Since we know that it must be an assume, this is just wasted work. Somewhat surprisingly, matching an intrinsic id is actually relatively expensive. It devolves to a string construction and comparison in Function::isIntrinsic.
I originally spotted this because it showed up in a performance profile of my compiler. I've since discovered a separate issue which seems to be the actual root cause, but this is minor perf goodness regardless.
I'm likely to follow up with another change to factor out the comparison matching. There's no need to match the compare instruction in every single one of the tests.
Differential Revision: http://reviews.llvm.org/D6312
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222709 91177308-0d34-0410-b5e6-96231b3b80d8
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222632 91177308-0d34-0410-b5e6-96231b3b80d8
AliasSetTracker::addUnknown may create an AliasSet devoid of pointers
just to contain an instruction if no suitable AliasSet already exists.
It will then AliasSet::addUnknownInst and we will be done.
However, it's possible for addUnknown to choose an existing AliasSet to
addUnknownInst.
If this were to occur, we are in a bit of a pickle: removing pointers
from the AliasSet can cause the entire AliasSet to become destroyed,
taking our unknown instructions out with them.
Instead, keep track whether or not our AliasSet has any unknown
instructions.
This fixes PR21582.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222338 91177308-0d34-0410-b5e6-96231b3b80d8
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
SCEVDivision::divide constructed an object of SCEVDivision<Derived>
instead of Derived. divide would call visit which would cast the
SCEVDivision<Derived> to type Derived. As it happens,
SCEVDivision<Derived> and Derived currently have the same layout but
this is fragile and grounds for UB.
Instead, just construct Derived. No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222126 91177308-0d34-0410-b5e6-96231b3b80d8
It turns out that not all users of SCEVDivision want the same
signedness. Let the users determine which operation they'd like by
explicitly choosing SCEVUDivision or SCEVSDivision.
findArrayDimensions and computeAccessFunctions will use SCEVSDivision
while HowFarToZero will use SCEVUDivision.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222104 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Several places in DependenceAnalysis assumes both SCEVs in a subscript pair
share the same integer type. For instance, isKnownPredicate calls
SE->getMinusSCEV(X, Y) which asserts X and Y share the same type. However,
DependenceAnalysis fails to ensure this assumption when producing a subscript
pair, causing tests such as NonCanonicalizedSubscript to crash. With this
patch, DependenceAnalysis runs unifySubscriptType before producing any
subscript pair, ensuring the assumption.
Test Plan:
Added NonCanonicalizedSubscript.ll on which DependenceAnalysis before the fix
crashed because subscripts have different types.
Reviewers: spop, sebpop, jingyue
Reviewed By: jingyue
Subscribers: eliben, meheff, llvm-commits
Differential Revision: http://reviews.llvm.org/D6289
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222100 91177308-0d34-0410-b5e6-96231b3b80d8
HowFarToZero was supposed to use unsigned division in order to calculate
the backedge taken count. However, SCEVDivision::divide performs signed
division. Unless I am mistaken, no users of SCEVDivision actually want
signed arithmetic: switch to udiv and urem.
This fixes PR21578.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222093 91177308-0d34-0410-b5e6-96231b3b80d8
A few things:
- computeKnownBits is relatively expensive, let's delay its use as long
as we can.
- Don't create two APInt values just to run computeKnownBits on a
ConstantInt, we already know the exact value!
- Avoid creating a temporary APInt value in order to calculate unary
negation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222092 91177308-0d34-0410-b5e6-96231b3b80d8
Private variables are can be renamed, so it is not reliable to make
decisions on the name.
The name is also dropped by the assembler before getting to the
linker, so using the name causes a disconnect between how llvm makes a
decision (var name) and how the linker makes a decision (section it is
in).
This patch changes one case where we were looking at the variable name to use
the section instead.
Test tuning by Michael Gottesman.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222061 91177308-0d34-0410-b5e6-96231b3b80d8
Let's try this again...
This reverts r219432, plus a bug fix.
Description of the bug in r219432 (by Nick):
The bug was using AllPositive to break out of the loop; if the loop break
condition i != e is changed to i != e && AllPositive then the
test_modulo_analysis_with_global test I've added will fail as the Modulo will
be calculated incorrectly (as the last loop iteration is skipped, so Modulo
isn't updated with its Scale).
Nick also adds this comment:
ComputeSignBit is safe to use in loops as it takes into account phi nodes, and
the == EK_ZeroEx check is safe in loops as, no matter how the variable changes
between iterations, zero-extensions will always guarantee a zero sign bit. The
isValueEqualInPotentialCycles check is therefore definitely not needed as all
the variable analysis holds no matter how the variables change between loop
iterations.
And this patch also adds another enhancement to GetLinearExpression - basically
to convert ConstantInts to Offsets (see test_const_eval and
test_const_eval_scaled for the situations this improves).
Original commit message:
This reverts r218944, which reverted r218714, plus a bug fix.
Description of the bug in r218714 (by Nick):
The original patch forgot to check if the Scale in VariableGEPIndex flipped the
sign of the variable. The BasicAA pass iterates over the instructions in the
order they appear in the function, and so BasicAliasAnalysis::aliasGEP is
called with the variable it first comes across as parameter GEP1. Adding a
%reorder label puts the definition of %a after %b so aliasGEP is called with %b
as the first parameter and %a as the second. aliasGEP later calculates that %a
== %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first
parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) -
ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly
conclude that %a > %b.
Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug.
Slightly modified by me to add an early exit from the loop and avoid
unnecessary, but expensive, function calls.
Original commit message:
Two related things:
1. Fixes a bug when calculating the offset in GetLinearExpression. The code
previously used zext to extend the offset, so negative offsets were converted
to large positive ones.
2. Enhance aliasGEP to deduce that, if the difference between two GEP
allocations is positive and all the variables that govern the offset are also
positive (i.e. the offset is strictly after the higher base pointer), then
locations that fit in the gap between the two base pointers are NoAlias.
Patch by Nick White!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
If x is known to have the range [a, b), in a loop predicated by (icmp
ne x, a) its range can be sharpened to [a + 1, b). Get
ScalarEvolution and hence IndVars to exploit this fact.
This change triggers an optimization to widen-loop-comp.ll, so it had
to be edited to get it to pass.
This change was originally landed in r219834 but had a bug and broke
ASan. It was reverted in r219878, and is now being re-landed after
fixing the original bug.
phabricator: http://reviews.llvm.org/D5639
reviewed by: atrick
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221839 91177308-0d34-0410-b5e6-96231b3b80d8
Make the handling of calls to intrinsics in CGSCC consistent:
they are not treated like regular function calls because they
are never lowered to function calls.
Without this patch, we can get dangling pointer asserts from
the subsequent loop that processes callsites because it already
ignores intrinsics.
See http://llvm.org/bugs/show_bug.cgi?id=21403 for more details / discussion.
Differential Revision: http://reviews.llvm.org/D6124
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221802 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, we're going to separate metadata from the Value hierarchy. See
PR21532.
This reverts commit r221375.
This reverts commit r221373.
This reverts commit r221359.
This reverts commit r221167.
This reverts commit r221027.
This reverts commit r221024.
This reverts commit r221023.
This reverts commit r220995.
This reverts commit r220994.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221711 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a new pass that can inject checks before indirect calls to
make sure that these calls target known locations. It supports three types of
checks and, at compile time, it can take the name of a custom function to call
when an indirect call check fails. The default failure function ignores the
error and continues.
This pass incidentally moves the function JumpInstrTables::transformType from
private to public and makes it static (with a new argument that specifies the
table type to use); this is so that the CFI code can transform function types
at call sites to determine which jump-instruction table to use for the check at
that site.
Also, this removes support for jumptables in ARM, pending further performance
analysis and discussion.
Review: http://reviews.llvm.org/D4167
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221708 91177308-0d34-0410-b5e6-96231b3b80d8
Exact shifts may not shift out any non-zero bits. Use computeKnownBits
to determine when this occurs and just return the left hand side.
This fixes PR21477.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221325 91177308-0d34-0410-b5e6-96231b3b80d8
Divides and remainder operations do not behave like other operations
when they are given poison: they turn into undefined behavior.
It's really hard to know if the operands going into a div are or are not
poison. Because of this, we should only choose to speculate if there
are constant operands which we can easily reason about.
This fixes PR21412.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221318 91177308-0d34-0410-b5e6-96231b3b80d8
LoadCombine can be smarter about aborting when a writing instruction is
encountered, instead of aborting upon encountering any writing instruction, use
an AliasSetTracker, and only abort when encountering some write that might
alias with the loads that could potentially be combined.
This was originally motivated by comments made (and a test case provided) by
David Majnemer in response to PR21448. It turned out that LoadCombine was not
responsible for that PR, but LoadCombine should also be improved so that
unrelated stores (and @llvm.assume) don't interrupt load combining.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221203 91177308-0d34-0410-b5e6-96231b3b80d8