the Callee list. This is going to be quite important to prevent removal
from going quadratic. No functionality changed at this point, this is
one of the refactoring patches I've broken out of my initial work toward
mutation updates of the call graph.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206938 91177308-0d34-0410-b5e6-96231b3b80d8
The branch that skips irreducible backedges was only active when
propagating mass at the top-level. In particular, when propagating mass
through a loop recognized by `LoopInfo` with irreducible control flow
inside, irreducible backedges would not be skipped.
Not sure where that idea came from, but the result was that mass was
lost until after loop exit. Added a testcase that covers this case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206860 91177308-0d34-0410-b5e6-96231b3b80d8
Store pointers directly to loops inside the nodes. This could have been
done without changing the type stored in `std::vector<>`. However,
rather than computing the number of loops before constructing them
(which `LoopInfo` doesn't provide directly), I've switched to a
`vector<unique_ptr<LoopData>>`.
This adds some heap overhead, but the number of loops is typically
small.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206857 91177308-0d34-0410-b5e6-96231b3b80d8
This was implicitly with copy assignment before, which fails to actually
clear `std::vector<>`'s heap storage. Move assignment would work, but
since MSVC can't imply those anyway, explicitly `clear()`-ing members
makes more sense.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206856 91177308-0d34-0410-b5e6-96231b3b80d8
definition below all the header #include lines, lib/Analysis/...
edition.
This one has a bit extra as there were *other* #define's before #include
lines in addition to DEBUG_TYPE. I've sunk all of them as a block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206843 91177308-0d34-0410-b5e6-96231b3b80d8
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206837 91177308-0d34-0410-b5e6-96231b3b80d8
behavior based on other files defining DEBUG_TYPE, which means it cannot
define DEBUG_TYPE at all. This is actually better IMO as it forces folks
to define relevant DEBUG_TYPEs for their files. However, it requires all
files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't
already. I've updated all such files in LLVM and will do the same for
other upstream projects.
This still leaves one important change in how LLVM uses the DEBUG_TYPE
macro going forward: we need to only define the macro *after* header
files have been #include-ed. Previously, this wasn't possible because
Debug.h required the macro to be pre-defined. This commit removes that.
By defining DEBUG_TYPE after the includes two things are fixed:
- Header files that need to provide a DEBUG_TYPE for some inline code
can do so by defining the macro before their inline code and undef-ing
it afterward so the macro does not escape.
- We no longer have rampant ODR violations due to including headers with
different DEBUG_TYPE definitions. This may be mostly an academic
violation today, but with modules these types of violations are easy
to check for and potentially very relevant.
Where necessary to suppor headers with DEBUG_TYPE, I have moved the
definitions below the includes in this commit. I plan to move the rest
of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big
enough.
The comments in Debug.h, which were hilariously out of date already,
have been updated to reflect the recommended practice going forward.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206822 91177308-0d34-0410-b5e6-96231b3b80d8
Change `PositiveFloat` to `UnsignedFloat`, and fix some of the comments
to indicate that it's disappearing eventually.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206771 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206707, reapplying r206704. The preceding commit
to CalcSpillWeights should have sorted out the failing buildbots.
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206766 91177308-0d34-0410-b5e6-96231b3b80d8
LazyCallGraph analysis framework. Wire it up all the way through the opt
driver and add some very basic testing that we can build pass pipelines
including these components. Still a lot more to do in terms of testing
that all of this works, but the basic pieces are here.
There is a *lot* of boiler plate here. It's something I'm going to
actively look at reducing, but I don't have any immediate ideas that
don't end up making the code terribly complex in order to fold away the
boilerplate. Until I figure out something to minimize the boilerplate,
almost all of this is based on the code for the existing pass managers,
copied and heavily adjusted to suit the needs of the CGSCC pass
management layer.
The actual CG management still has a bunch of FIXMEs in it. Notably, we
don't do *any* updating of the CG as it is potentially invalidated.
I wanted to get this in place to motivate the new analysis, and add
update APIs to the analysis and the pass management layers in concert to
make sure that the *right* APIs are present.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206745 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206677, reapplying my BlockFrequencyInfo rewrite.
I've done a careful audit, added some asserts, and fixed a couple of
bugs (unfortunately, they were in unlikely code paths). There's a small
chance that this will appease the failing bots [1][2]. (If so, great!)
If not, I have a follow-up commit ready that will temporarily add
-debug-only=block-freq to the two failing tests, allowing me to compare
the code path between what the failing bots and what my machines (and
the rest of the bots) are doing. Once I've triggered those builds, I'll
revert both commits so the bots go green again.
[1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816
[2]: http://llvm-amd64.freebsd.your.org/b/builders/clang-i386-freebsd/builds/18445
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206704 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206666, as planned.
Still stumped on why the bots are failing. Sanitizer bots haven't
turned anything up. If anyone can help me debug either of the failures
(referenced in r206666) I'll owe them a beer. (In the meantime, I'll be
auditing my patch for undefined behaviour.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206677 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206628, reapplying r206622 (and r206626).
Two tests are failing only on buildbots [1][2]: i.e., I can't reproduce
on Darwin, and Chandler can't reproduce on Linux. Asan and valgrind
don't tell us anything, but we're hoping the msan bot will catch it.
So, I'm applying this again to get more feedback from the bots. I'll
leave it in long enough to trigger builds in at least the sanitizer
buildbots (it was failing for reasons unrelated to my commit last time
it was in), and hopefully a few others.... and then I expect to revert a
third time.
[1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816
[2]: http://llvm-amd64.freebsd.your.org/b/builders/clang-i386-freebsd/builds/18445
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206666 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206622 and the MSVC fixup in r206626.
Apparently the remotely failing tests are still failing, despite my
attempt to fix the nondeterminism in r206621.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206628 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206556, effectively reapplying commit r206548 and
its fixups in r206549 and r206550.
In an intervening commit I've added target triples to the tests that
were failing remotely [1] (but passing locally). I'm hoping the mystery
is solved? I'll revert this again if the tests are still failing
remotely.
[1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206622 91177308-0d34-0410-b5e6-96231b3b80d8
Reality is that we're never going to copy one of these. Supporting this
was becoming a nightmare because nothing even causes it to compile most
of the time. Lots of subtle errors built up that wouldn't have been
caught by any "normal" testing.
Also, make the move assignment actually work rather than the bogus swap
implementation that would just infloop if used. As part of that, factor
out the graph pointer updates into a helper to share between move
construction and move assignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206583 91177308-0d34-0410-b5e6-96231b3b80d8
LazyCallGraph. This is the start of the whole point of this different
abstraction, but it is just the initial bits. Here is a run-down of
what's going on here. I'm planning to incorporate some (or all) of this
into comments going forward, hopefully with better editing and wording.
=]
The crux of the problem with the traditional way of building SCCs is
that they are ephemeral. The new pass manager however really needs the
ability to associate analysis passes and results of analysis passes with
SCCs in order to expose these analysis passes to the SCC passes. Making
this work is kind-of the whole point of the new pass manager. =]
So, when we're building SCCs for the call graph, we actually want to
build persistent nodes that stick around and can be reasoned about
later. We'd also like the ability to walk the SCC graph in more complex
ways than just the traditional postorder traversal of the current CGSCC
walk. That means that in addition to being persistent, the SCCs need to
be connected into a useful graph structure.
However, we still want the SCCs to be formed lazily where possible.
These constraints are quite hard to satisfy with the SCC iterator. Also,
using that would bypass our ability to actually add data to the nodes of
the call graph to facilite implementing the Tarjan walk. So I've
re-implemented things in a more direct and embedded way. This
immediately makes it easy to get the persistence and connectivity
correct, and it also allows leveraging the existing nodes to simplify
the algorithm. I've worked somewhat to make this implementation more
closely follow the traditional paper's nomenclature and strategy,
although it is still a bit obtuse because it isn't recursive, using
an explicit stack and a tail call instead, and it is interruptable,
resuming each time we need another SCC.
The other tricky bit here, and what actually took almost all the time
and trials and errors I spent building this, is exactly *what* graph
structure to build for the SCCs. The naive thing to build is the call
graph in its newly acyclic form. I wrote about 4 versions of this which
did precisely this. Inevitably, when I experimented with them across
various use cases, they became incredibly awkward. It was all
implementable, but it felt like a complete wrong fit. Square peg, round
hole. There were two overriding aspects that pushed me in a different
direction:
1) We want to discover the SCC graph in a postorder fashion. That means
the root node will be the *last* node we find. Using the call-SCC DAG
as the graph structure of the SCCs results in an orphaned graph until
we discover a root.
2) We will eventually want to walk the SCC graph in parallel, exploring
distinct sub-graphs independently, and synchronizing at merge points.
This again is not helped by the call-SCC DAG structure.
The structure which, quite surprisingly, ended up being completely
natural to use is the *inverse* of the call-SCC DAG. We add the leaf
SCCs to the graph as "roots", and have edges to the caller SCCs. Once
I switched to building this structure, everything just fell into place
elegantly.
Aside from general cleanups (there are FIXMEs and too few comments
overall) that are still needed, the other missing piece of this is
support for iterating across levels of the SCC graph. These will become
useful for implementing #2, but they aren't an immediate priority.
Once SCCs are in good shape, I'll be working on adding mutation support
for incremental updates and adding the pass manager that this analysis
enables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206581 91177308-0d34-0410-b5e6-96231b3b80d8
Rewrite the shared implementation of BlockFrequencyInfo and
MachineBlockFrequencyInfo entirely.
The old implementation had a fundamental flaw: precision losses from
nested loops (or very wide branches) compounded past loop exits (and
convergence points).
The @nested_loops testcase at the end of
test/Analysis/BlockFrequencyAnalysis/basic.ll is motivating. This
function has three nested loops, with branch weights in the loop headers
of 1:4000 (exit:continue). The old analysis gives non-sensical results:
Printing analysis 'Block Frequency Analysis' for function 'nested_loops':
---- Block Freqs ----
entry = 1.0
for.cond1.preheader = 1.00103
for.cond4.preheader = 5.5222
for.body6 = 18095.19995
for.inc8 = 4.52264
for.inc11 = 0.00109
for.end13 = 0.0
The new analysis gives correct results:
Printing analysis 'Block Frequency Analysis' for function 'nested_loops':
block-frequency-info: nested_loops
- entry: float = 1.0, int = 8
- for.cond1.preheader: float = 4001.0, int = 32007
- for.cond4.preheader: float = 16008001.0, int = 128064007
- for.body6: float = 64048012001.0, int = 512384096007
- for.inc8: float = 16008001.0, int = 128064007
- for.inc11: float = 4001.0, int = 32007
- for.end13: float = 1.0, int = 8
Most importantly, the frequency leaving each loop matches the frequency
entering it.
The new algorithm leverages BlockMass and PositiveFloat to maintain
precision, separates "probability mass distribution" from "loop
scaling", and uses dithering to eliminate probability mass loss. I have
unit tests for these types out of tree, but it was decided in the review
to make the classes private to BlockFrequencyInfoImpl, and try to shrink
them (or remove them entirely) in follow-up commits.
The new algorithm should generally have a complexity advantage over the
old. The previous algorithm was quadratic in the worst case. The new
algorithm is still worst-case quadratic in the presence of irreducible
control flow, but it's linear without it.
The key difference between the old algorithm and the new is that control
flow within a loop is evaluated separately from control flow outside,
limiting propagation of precision problems and allowing loop scale to be
calculated independently of mass distribution. Loops are visited
bottom-up, their loop scales are calculated, and they are replaced by
pseudo-nodes. Mass is then distributed through the function, which is
now a DAG. Finally, loops are revisited top-down to multiply through
the loop scales and the masses distributed to pseudo nodes.
There are some remaining flaws.
- Irreducible control flow isn't modelled correctly. LoopInfo and
MachineLoopInfo ignore irreducible edges, so this algorithm will
fail to scale accordingly. There's a note in the class
documentation about how to get closer. See also the comments in
test/Analysis/BlockFrequencyInfo/irreducible.ll.
- Loop scale is limited to 4096 per loop (2^12) to avoid exhausting
the 64-bit integer precision used downstream.
- The "bias" calculation proposed on llvmdev is *not* incorporated
here. This will be added in a follow-up commit, once comments from
this review have been handled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206548 91177308-0d34-0410-b5e6-96231b3b80d8
After some discussions the preferred semantics of
the always_inline attribute is
inline always when the compiler can determine
that it it safe to do so.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206487 91177308-0d34-0410-b5e6-96231b3b80d8
graph. This simplifies the custom move constructor operation to one of
walking the graph and updating the 'up' pointers to point to the new
location of the graph. Switch the nodes from a reference to a pointer
for the 'up' edge to facilitate this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206450 91177308-0d34-0410-b5e6-96231b3b80d8
is set even when it contains a indirect branch.
The attribute overrules correctness concerns
like the escape of a local block address.
This is for rdar://16501761
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206429 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, BranchProbabilityInfo::calcLoopBranchHeuristics would determine the weights of basic blocks inside loops even when it didn't have enough information to estimate the branch probabilities correctly. This patch fixes the function to exit early if it doesn't see any exit edges or back edges and let the later heuristics determine the weights.
This fixes PR18705 and <rdar://problem/15991090>.
Differential Revision: http://reviews.llvm.org/D3363
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206194 91177308-0d34-0410-b5e6-96231b3b80d8
This is a shared implementation class for BlockFrequencyInfo and
MachineBlockFrequencyInfo, not for BlockFrequency, a related (but
distinct) class.
No functionality change.
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206083 91177308-0d34-0410-b5e6-96231b3b80d8
into a constant size alloca by inlining.
Ran a run over the testsuite, no results out of the noise, fixes
the testcase in the PR.
PR19115.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205710 91177308-0d34-0410-b5e6-96231b3b80d8
The implementation of getUserCost had duplicated (and hard-coded) the default
logic in getGEPCost. Instead, it is better to use getGEPCost directly, which
limits the default logic to the implementation of one function, and allows
targets to override the behavior.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205346 91177308-0d34-0410-b5e6-96231b3b80d8
This commit consist of two parts.
The first part fix the PR15967. The wrong conclusion was made when the MaxLookup
limit was reached. The fix introduce a out parameter (MaxLookupReached) to
DecomposeGEPExpression that the function aliasGEP can act upon.
The second part is introducing the constant MaxLookupSearchDepth to make sure
that DecomposeGEPExpression and GetUnderlyingObject use the same search depth.
This is a small cleanup to clarify the original algorithm.
Patch by Karl-Johan Karlsson!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204859 91177308-0d34-0410-b5e6-96231b3b80d8
Implement Pass::releaseMemory() in BlockFrequencyInfo and
MachineBlockFrequencyInfo. Just delete the private implementation when
not in use. Switch to a std::unique_ptr to make the logic more clear.
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204741 91177308-0d34-0410-b5e6-96231b3b80d8
If we have a loop of the form
for (unsigned n = 0; n != (k & -32); n += 32) {}
then we know that n is always divisible by 32 and the loop must
terminate. Even if we have a condition where the loop counter will
overflow it'll always hold this invariant.
PR19183. Our loop vectorizer creates this pattern and it's also
occasionally formed by loop counters derived from pointers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204728 91177308-0d34-0410-b5e6-96231b3b80d8
Extend the target hook to take also the operand index into account when
calculating the cost of the constant materialization.
Related to <rdar://problem/16381500>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204435 91177308-0d34-0410-b5e6-96231b3b80d8
This commit extends the coverage of the constant hoisting pass, adds additonal
debug output and updates the function names according to the style guide.
Related to <rdar://problem/16381500>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204389 91177308-0d34-0410-b5e6-96231b3b80d8
The "noduplicate" attribute of call instructions is sometimes queried directly
and sometimes through the cannotDuplicate() predicate. This patch streamlines
all queries to use the cannotDuplicate() predicate. It also adds this predicate
to InvokeInst, to mirror what CallInst has.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204049 91177308-0d34-0410-b5e6-96231b3b80d8
The syntax for "cmpxchg" should now look something like:
cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic
where the second ordering argument gives the required semantics in the case
that no exchange takes place. It should be no stronger than the first ordering
constraint and cannot be either "release" or "acq_rel" (since no store will
have taken place).
rdar://problem/15996804
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203559 91177308-0d34-0410-b5e6-96231b3b80d8
the stack of the analysis group because they are all immutable passes.
This is made clear by Craig's recent work to use override
systematically -- we weren't overriding anything for 'finalizePass'
because there is no such thing.
This is kind of a lame restriction on the API -- we can no longer push
and pop things, we just set up the stack and run. However, I'm not
invested in building some better solution on top of the existing
(terrifying) immutable pass and legacy pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203437 91177308-0d34-0410-b5e6-96231b3b80d8
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203083 91177308-0d34-0410-b5e6-96231b3b80d8
to ensure we don't mess up any of the overrides. Necessary for cleaning
up the Value use iterators and enabling range-based traversing of use
lists.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202958 91177308-0d34-0410-b5e6-96231b3b80d8
a bit surprising, as the class is almost entirely abstracted away from
any particular IR, however it encodes the comparsion predicates which
mutate ranges as ICmp predicate codes. This is reasonable as they're
used for both instructions and constants. Thus, it belongs in the IR
library with instructions and constants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202838 91177308-0d34-0410-b5e6-96231b3b80d8
Move the test for this class into the IR unittests as well.
This uncovers that ValueMap too is in the IR library. Ironically, the
unittest for ValueMap is useless in the Support library (honestly, so
was the ValueHandle test) and so it already lives in the IR unittests.
Mmmm, tasty layering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202821 91177308-0d34-0410-b5e6-96231b3b80d8
name might indicate, it is an iterator over the types in an instruction
in the IR.... You see where this is going.
Another step of modularizing the support library.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202815 91177308-0d34-0410-b5e6-96231b3b80d8
business.
This header includes Function and BasicBlock and directly uses the
interfaces of both classes. It has to do with the IR, it even has that
in the name. =] Put it in the library it belongs to.
This is one step toward making LLVM's Support library survive a C++
modules bootstrap.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202814 91177308-0d34-0410-b5e6-96231b3b80d8
operand_values. The first provides a range view over operand Use
objects, and the second provides a range view over the Value*s being
used by those operands.
The naming is "STL-style" rather than "LLVM-style" because we have
historically named iterator methods STL-style, and range methods seem to
have far more in common with their iterator counterparts than with
"normal" APIs. Feel free to bikeshed on this one if you want, I'm happy
to change these around if people feel strongly.
I've switched code in SROA and LCG to exercise these mostly to ensure
they work correctly -- we don't really have an easy way to unittest this
and they're trivial.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202687 91177308-0d34-0410-b5e6-96231b3b80d8
Eventually DataLayoutPass should go away, but for now that is the only easy
way to get a DataLayout in some APIs. This patch only changes the ones that
have easy access to a Module.
One interesting issue with sometimes using DataLayoutPass and sometimes
fetching it from the Module is that we have to make sure they are equivalent.
We can get most of the way there by always constructing the pass with a Module.
In fact, the pass could be changed to point to an external DataLayout instead
of owning one to make this stricter.
Unfortunately, the C api passes a DataLayout, so it has to be up to the caller
to make sure the pass and the module are in sync.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202204 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, have a DataLayoutPass that holds one. This will allow parts of LLVM
don't don't handle passes to also use DataLayout.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202168 91177308-0d34-0410-b5e6-96231b3b80d8
After this I will set the default back to F_None. The advantage is that
before this patch forgetting to set F_Binary would corrupt a file on windows.
Forgetting to set F_Text produces one that cannot be read in notepad, which
is a better failure mode :-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202052 91177308-0d34-0410-b5e6-96231b3b80d8
in the dependence test, we used to discard some information that the
delinearization provides: the size of the innermost dimension of an array,
i.e., the size of scalars stored in the array, and the remainder of the
delinearization that provides the offset from which the array reads start,
i.e., the base address of the array.
To avoid losing this data in the rest of the data dependence analysis, the fix
is to multiply the access function in the last delinearized dimension by its
size, effectively making the size of the last dimension to always be in bytes,
and then add the remainder of delinearization to the last subscript,
effectively making the last subscript start at the base address of the array.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201867 91177308-0d34-0410-b5e6-96231b3b80d8
Because the delinearization is not a global analysis pass, it will compute the
delinearization independently of knowledge about the way the delinearization
happened for other data accesses to the same array: the dependence analysis will
only trigger the delinearization on a tuple of access functions, and thus
delinearization may compute different subscripts sizes for a same array. When
that happens the safest is to discard the delinearized information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201866 91177308-0d34-0410-b5e6-96231b3b80d8
I am really sorry for the noise, but the current state where some parts of the
code use TD (from the old name: TargetData) and other parts use DL makes it
hard to write a patch that changes where those variables come from and how
they are passed along.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201827 91177308-0d34-0410-b5e6-96231b3b80d8
During LSR of one loop we can run into a situation where we have to expand the
start of a recurrence of a loop induction variable in this loop. This start
value is a value derived of the induction variable of a preceeding loop. SCEV
has cannonicalized this value to a different recurrence than the recurrence of
the preceeding loop's induction variable (the type and/or step direction) has
changed). When we come to instantiate this SCEV we created a second induction
variable in this preceeding loop. This patch tries to base such derived
induction variables of the preceeding loop's induction variable.
This helps twolf on arm and seems to help scimark2 on x86.
Reapply with a fix for the case of a value derived from a pointer.
radar://15970709
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201496 91177308-0d34-0410-b5e6-96231b3b80d8
During LSR of one loop we can run into a situation where we have to expand the
start of a recurrence of a loop induction variable in this loop. This start
value is a value derived of the induction variable of a preceeding loop. SCEV
has cannonicalized this value to a different recurrence than the recurrence of
the preceeding loop's induction variable (the type and/or step direction) has
changed). When we come to instantiate this SCEV we created a second induction
variable in this preceeding loop. This patch tries to base such derived
induction variables of the preceeding loop's induction variable.
This helps twolf on arm and seems to help scimark2 on x86.
radar://15970709
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201465 91177308-0d34-0410-b5e6-96231b3b80d8
'OK_NonUniformConstValue' to identify operands which are constants but
not constant splats.
The cost model now allows returning 'OK_NonUniformConstValue'
for non splat operands that are instances of ConstantVector or
ConstantDataVector.
With this change, targets are now able to compute different costs
for instructions with non-uniform constant operands.
For example, On X86 the cost of a vector shift may vary depending on whether
the second operand is a uniform or non-uniform constant.
This patch applies the following changes:
- The cost model computation now takes into account non-uniform constants;
- The cost of vector shift instructions has been improved in
X86TargetTransformInfo analysis pass;
- BBVectorize, SLPVectorizer and LoopVectorize now know how to distinguish
between non-uniform and uniform constant operands.
Added a new test to verify that the output of opt
'-cost-model -analyze' is valid in the following configurations: SSE2,
SSE4.1, AVX, AVX2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201272 91177308-0d34-0410-b5e6-96231b3b80d8
build but spectacularly changed behavior of the C++98 build. =]
This shows my one problem with not having unittests -- basic API
expectations aren't well exercised by the integration tests because they
*happen* to not come up, even though they might later. I'll probably add
a basic unittest to complement the integration testing later, but
I wanted to revive the bots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200905 91177308-0d34-0410-b5e6-96231b3b80d8
The primary motivation for this pass is to separate the call graph
analysis used by the new pass manager's CGSCC pass management from the
existing call graph analysis pass. That analysis pass is (somewhat
unfortunately) over-constrained by the existing CallGraphSCCPassManager
requirements. Those requirements make it *really* hard to cleanly layer
the needed functionality for the new pass manager on top of the existing
analysis.
However, there are also a bunch of things that the pass manager would
specifically benefit from doing differently from the existing call graph
analysis, and this new implementation tries to address several of them:
- Be lazy about scanning function definitions. The existing pass eagerly
scans the entire module to build the initial graph. This new pass is
significantly more lazy, and I plan to push this even further to
maximize locality during CGSCC walks.
- Don't use a single synthetic node to partition functions with an
indirect call from functions whose address is taken. This node creates
a huge choke-point which would preclude good parallelization across
the fanout of the SCC graph when we got to the point of looking at
such changes to LLVM.
- Use a memory dense and lightweight representation of the call graph
rather than value handles and tracking call instructions. This will
require explicit update calls instead of some updates working
transparently, but should end up being significantly more efficient.
The explicit update calls ended up being needed in many cases for the
existing call graph so we don't really lose anything.
- Doesn't explicitly model SCCs and thus doesn't provide an "identity"
for an SCC which is stable across updates. This is essential for the
new pass manager to work correctly.
- Only form the graph necessary for traversing all of the functions in
an SCC friendly order. This is a much simpler graph structure and
should be more memory dense. It does limit the ways in which it is
appropriate to use this analysis. I wish I had a better name than
"call graph". I've commented extensively this aspect.
This is still very much a WIP, in fact it is really just the initial
bits. But it is about the fourth version of the initial bits that I've
implemented with each of the others running into really frustrating
problms. This looks like it will actually work and I'd like to split the
actual complexity across commits for the sake of my reviewers. =] The
rest of the implementation along with lots of wiring will follow
somewhat more rapidly now that there is a good path forward.
Naturally, this doesn't impact any of the existing optimizer. This code
is specific to the new pass manager.
A bunch of thanks are deserved for the various folks that have helped
with the design of this, especially Nick Lewycky who actually sat with
me to go through the fundamentals of the final version here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200903 91177308-0d34-0410-b5e6-96231b3b80d8
Ideally only those transform passes that run at -O0 remain enabled,
in reality we get as close as we reasonably can.
Passes are responsible for disabling themselves, it's not the job of
the pass manager to do it for them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200892 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change. Updated loops from:
for (I = scc_begin(), E = scc_end(); I != E; ++I)
to:
for (I = scc_begin(); !I.isAtEnd(); ++I)
for teh win.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200789 91177308-0d34-0410-b5e6-96231b3b80d8
cost so that they don't impact the vector bonus. Fundamentally, counting
unsimplified instructions is just *wrong*; it will continue to introduce
instability as things which do not generate code bizarrely impact
inlining. For example, sufficiently nested inlined functions could turn
off the vector bonus with lifetime markers just like the debug
intrinsics do. =/
This is a short-term tactical fix. Long term, I think we need to remove
the vector bonus entirely. That's a separate patch and discussion
though.
The patch to fix this provided by Dario Domizioli. I've added some
comments about the planned direction and used a heavily pruned form of
debug info intrinsics for the test case. While this debug info doesn't
work or "do" anything useful, it lets us easily test all manner of
interference easily, and I suspect this will not be the last time we
want to craft a pattern where debug info interferes with the inliner in
a problematic way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200609 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't set errno, so this should be OK.
Also update the documentation to explicitly state
that errno are not set.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200501 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I searched Transforms/ and Analysis/ for 'ByVal' and updated those call
sites to check for inalloca if appropriate.
I added tests for any change that would allow an optimization to fire on
inalloca.
Reviewers: nlewycky
Differential Revision: http://llvm-reviews.chandlerc.com/D2449
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200281 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately, this in turn led to some lower quality SCEVs due to some different paths through expression simplification, so add getUDivExactExpr and use it. This fixes all instances of the problems that I found, but we can make that function smarter as necessary.
Merge test "xor-and.ll" into "and-xor.ll" since I needed to update it anyways. Test 'nsw-offset.ll' analyzes a little deeper, %n now gets a scev in terms of %no instead of a SCEVUnknown.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200203 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r200058 and adds the using directive for
ARMTargetTransformInfo to silence two g++ overload warnings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200062 91177308-0d34-0410-b5e6-96231b3b80d8
This commit caused -Woverloaded-virtual warnings. The two new
TargetTransformInfo::getIntImmCost functions were only added to the superclass,
and to the X86 subclass. The other targets were not updated, and the
warning highlighted this by pointing out that e.g. ARMTTI::getIntImmCost was
hiding the two new getIntImmCost variants.
We could pacify the warning by adding "using TargetTransformInfo::getIntImmCost"
to the various subclasses, or turning it off, but I suspect that it's wrong to
leave the functions unimplemnted in those targets. The default implementations
return TCC_Free, which I don't think is right e.g. for ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200058 91177308-0d34-0410-b5e6-96231b3b80d8
Retry commit r200022 with a fix for the build bot errors. Constant expressions
have (unlike instructions) module scope use lists and therefore may have users
in different functions. The fix is to simply ignore these out-of-function uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200034 91177308-0d34-0410-b5e6-96231b3b80d8
This pass identifies expensive constants to hoist and coalesces them to
better prepare it for SelectionDAG-based code generation. This works around the
limitations of the basic-block-at-a-time approach.
First it scans all instructions for integer constants and calculates its
cost. If the constant can be folded into the instruction (the cost is
TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
consider it expensive and leave it alone. This is the default behavior and
the default implementation of getIntImmCost will always return TCC_Free.
If the cost is more than TCC_BASIC, then the integer constant can't be folded
into the instruction and it might be beneficial to hoist the constant.
Similar constants are coalesced to reduce register pressure and
materialization code.
When a constant is hoisted, it is also hidden behind a bitcast to force it to
be live-out of the basic block. Otherwise the constant would be just
duplicated and each basic block would have its own copy in the SelectionDAG.
The SelectionDAG recognizes such constants as opaque and doesn't perform
certain transformations on them, which would create a new expensive constant.
This optimization is only applied to integer constants in instructions and
simple (this means not nested) constant cast experessions. For example:
%0 = load i64* inttoptr (i64 big_constant to i64*)
Reviewed by Eric
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200022 91177308-0d34-0410-b5e6-96231b3b80d8
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the 'verifyFunction' and 'verifyModule' functions totally
independent operations on the LLVM IR. It also cleans up their API a bit
by lifting the abort behavior into their clients and just using an
optional raw_ostream parameter to control printing.
The implementation of the verifier is now just an InstVisitor with no
multiple inheritance. It also is significantly more const-correct, and
hides the const violations internally. The two layers that force us to
break const correctness are building a DomTree and dispatching through
the InstVisitor.
A new VerifierPass is used to implement the legacy pass manager
interface in terms of the other pieces.
The error messages produced may be slightly different now, and we may
have slightly different short circuiting behavior with different usage
models of the verifier, but generally everything works equivalently and
this unblocks wiring the verifier up to the new pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199569 91177308-0d34-0410-b5e6-96231b3b80d8
can be used by both the new pass manager and the old.
This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.
The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.
Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199104 91177308-0d34-0410-b5e6-96231b3b80d8
trees into the Support library.
These are all expressed in terms of the generic GraphTraits and CFG,
with no reliance on any concrete IR types. Putting them in support
clarifies that and makes the fact that the static analyzer in Clang uses
them much more sane. When moving the Dominators.h file into the IR
library I claimed that this was the right home for it but not something
I planned to work on. Oops.
So why am I doing this? It happens to be one step toward breaking the
requirement that IR verification can only be performed from inside of
a pass context, which completely blocks the implementation of
verification for the new pass manager infrastructure. Fixing it will
also allow removing the concept of the "preverify" step (WTF???) and
allow the verifier to cleanly flag functions which fail verification in
a way that precludes even computing dominance information. Currently,
that results in a fatal error even when you ask the verifier to not
fatally error. It's awesome like that.
The yak shaving will continue...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199095 91177308-0d34-0410-b5e6-96231b3b80d8
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199082 91177308-0d34-0410-b5e6-96231b3b80d8
name to match the source file which I got earlier. Update the include
sites. Also modernize the comments in the header to use the more
recommended doxygen style.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199041 91177308-0d34-0410-b5e6-96231b3b80d8
operand into the Value interface just like the core print method is.
That gives a more conistent organization to the IR printing interfaces
-- they are all attached to the IR objects themselves. Also, update all
the users.
This removes the 'Writer.h' header which contained only a single function
declaration.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198836 91177308-0d34-0410-b5e6-96231b3b80d8
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198688 91177308-0d34-0410-b5e6-96231b3b80d8
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8
Missed this when adding the skeleton analysis. Caught by a build break
in the next patch I'm working on when trying to use the analysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198556 91177308-0d34-0410-b5e6-96231b3b80d8