Start using it in LLD to avoid needing to read bitcode again just to get the
target triple, and in llvm-lto2 to avoid printing symbol table information
that is inappropriate for the target.
Differential Revision: https://reviews.llvm.org/D32038
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300300 91177308-0d34-0410-b5e6-96231b3b80d8
The tests were failing due to an occasional deadlock in SerializationTraits
for Error: Both serializers and deserializers were protected by a single
mutex and in the unit test (where both ends of the RPC are in the same
process) one side might obtain the mutex, then block waiting for input,
leaving the other side of the connection unable to obtain the mutex to
write the data the first side was waiting for. Splitting the mutex into
two (one for serialization, one for deserialization) appears to have fixed the
issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300286 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we have a type that can represent the attributes on a single
return, function, or parameter, we can pass it around directly rather
than passing around AttributeList and Idx. Removes some more one-based
argument attribute index counting.
NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300285 91177308-0d34-0410-b5e6-96231b3b80d8
Add hasParamAttribute() and use it instead of hasAttribute(ArgNo+1,
Kind) everywhere.
The fact that the AttributeList index for an argument is ArgNo+1 should
be a hidden implementation detail.
NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300272 91177308-0d34-0410-b5e6-96231b3b80d8
Switch from Euclid's algorithm to Stein's algorithm for computing GCD. This
avoids the (expensive) APInt division operation in favour of bit operations.
Remove all memory allocation from within the GCD loop by tweaking our `lshr`
implementation so it can operate in-place.
Differential Revision: https://reviews.llvm.org/D31968
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300252 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: For iterative SamplePGO, an indirect call can be speculatively promoted to multiple direct calls and get inlined. All these promoted direct calls will share the same callsite location (offset+discriminator). With the current implementation, we cannot distinguish between different promotion candidates and its inlined instance. This patch adds callee_name to the key of the callsite sample map. And added helper functions to get all inlined callee samples for a given callsite location. This helps the profile annotator promote correct targets and inline it before annotation, and ensures all indirect call targets to be annotated correctly.
Reviewers: davidxl, dnovillo
Reviewed By: davidxl
Subscribers: andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31950
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300240 91177308-0d34-0410-b5e6-96231b3b80d8
No one uses them and I may improve the operator&, operator|, and operator^ to better reuse memory allocations like APInt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300224 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The linker needs to be able to determine whether a symbol is text or data to
handle the case of a common being overridden by a strong definition in an
archive. If the archive contains a text member of the same name as the common,
that function is discarded. However, if the archive contains a data member of
the same name, that strong definition overrides the common. This is a behavior
of ld.bfd, which the Qualcomm linker also supports in LTO.
Here's a test case to illustrate:
####
cat > 1.c << \!
int blah;
!
cat > 2.c << \!
int blah() {
return 0;
}
!
cat > 3.c << \!
int blah = 20;
!
clang -c 1.c
clang -c 2.c
clang -c 3.c
ar cr lib.a 2.o 3.o
ld 1.o lib.a -t
####
The correct output is:
1.o
(lib.a)3.o
Thanks to Shankar Easwaran and Hemant Kulkarni for the test case!
Reviewers: mehdi_amini, rafael, pcc, davide
Reviewed By: pcc
Subscribers: davide, llvm-commits, inglorion
Differential Revision: https://reviews.llvm.org/D31901
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300205 91177308-0d34-0410-b5e6-96231b3b80d8
Instructions CALLSEQ_START..CALLSEQ_END and their target dependent
counterparts keep data like frame size, stack adjustment etc. These
data are accessed by getOperand using hard coded indices. It is
error prone way. This change implements the access by special methods,
which improve readability and allow changing data representation without
massive changes of index values.
Differential Revision: https://reviews.llvm.org/D31953
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300196 91177308-0d34-0410-b5e6-96231b3b80d8
The bool type may be larger than the char type, so assuming we can cast from
bool to char and write a byte out to the stream is unsafe.
Hopefully this will get RPCUtilsTest.ReturnExpectedFailure passing on the bots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300174 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
APInt is currently implemented with an unsigned BitWidth field first and then a uint_64/pointer union. Due to the 64-bit size of the union there is a hole after the bitwidth.
Putting the union first allows the class to be packed. Making it 12 bytes instead of 16 bytes. An APSInt goes from 20 bytes to 16 bytes.
This shows a 4k reduction on the size of the opt binary on my local x86-64 build. So this enables some other improvement to the code as well.
Reviewers: dblaikie, RKSimon, hans, davide
Reviewed By: davide
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D32001
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300171 91177308-0d34-0410-b5e6-96231b3b80d8
This patch allows Error and Expected types to be passed to and returned from
RPC functions.
Serializers and deserializers for custom error types (types deriving from the
ErrorInfo class template) can be registered with the SerializationTraits for
a given channel type (see registerStringError in RPCSerialization.h for an
example), allowing a given custom type to be sent/received. Unregistered types
will be serialized/deserialized as StringErrors using the custom type's log
message as the error string.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300167 91177308-0d34-0410-b5e6-96231b3b80d8
This is a magic header file supported by the build system that provides a
single definition, LLVM_REVISION, containing an LLVM revision identifier,
if available. This functionality previously lived in the LTO library, but
I am moving it out to lib/Support because I want to also start using it in
lib/Object to create the IR symbol table.
This change also fixes a bug where LLVM_REVISION was never actually being
used in lib/LTO because the macro HAS_LLVM_REVISION was never defined (it
was misspelled as HAVE_SVN_VERSION_INC in lib/LTO/CMakeLists.txt, and was
only being defined in a non-existent file Version.cpp).
I also changed the code to use "git rev-parse --git-dir" to locate the .git
directory, instead of looking for it in the LLVM source root directory,
which makes this compatible with monorepos as well as git worktrees.
Differential Revision: https://reviews.llvm.org/D31985
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300160 91177308-0d34-0410-b5e6-96231b3b80d8
This seems like a much more natural API, based on Derek Schuff's
comments on r300015. It further hides the implementation detail of
AttributeList that function attributes come last and appear at index
~0U, which is easy for the user to screw up. git diff says it saves code
as well: 97 insertions(+), 137 deletions(-)
This also makes it easier to change the implementation, which I want to
do next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300153 91177308-0d34-0410-b5e6-96231b3b80d8
This typedef used to be conditional based on whether rvalue references were supported. Looks like it got left behind when we switched to always having rvalue references with c++11. I don't think it provides any value now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300146 91177308-0d34-0410-b5e6-96231b3b80d8
Improve performance of argument list parsing with large numbers of IDs and
large numbers of arguments, by tracking a conservative range of indexes within
the argument list that might contain an argument with each ID. In the worst
case (when the first and last argument with a given ID are at the opposite ends
of the argument list), this still results in a linear-time walk of the list,
but it helps substantially in the common case where each ID occurs only once,
or a few times close together in the list.
This gives a ~10x speedup to clang's `test/Driver/response-file.c`, which
constructs a very large set of command line arguments and feeds them to the
clang driver.
Differential Revision: https://reviews.llvm.org/D30130
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300135 91177308-0d34-0410-b5e6-96231b3b80d8
In a followup patch I intend to introduce an additional dumping
mode which dumps a graphical representation of a class's layout.
In preparation for this, the text-based layout printer needs to
be split out from the graphical layout printer, and both need
to be able to use the same code for printing the intro and outro
of a class's definition (e.g. base class list, etc).
This patch does so, and in the process introduces a skeleton
definition for the graphical printer, while currently making
the graphical printer just print nothing.
NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300134 91177308-0d34-0410-b5e6-96231b3b80d8
Previously the dumping of class definitions was very primitive,
and it made it hard to do more than the most trivial of output
formats when dumping. As such, we would only dump one line for
each field, and then dump non-layout items like nested types
and enums.
With this patch, we do a complete analysis of the object
hierarchy including aggregate types, bases, virtual bases,
vftable analysis, etc. The only immediately visible effects
of this are that a) we can now dump a line for the vfptr where
before we would treat that as padding, and b) we now don't
treat virtual bases that come at the end of a class as padding
since we have a more detailed analysis of the class's storage
usage.
In subsequent patches, we should be able to use this analysis
to display a complete graphical view of a class's layout including
recursing arbitrarily deep into an object's base class / aggregate
member hierarchy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300133 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Readnone attribute would cause CSE of two barriers with
the same argument, which is invalid by example:
struct Base {
virtual int foo() { return 42; }
};
struct Derived1 : Base {
int foo() override { return 50; }
};
struct Derived2 : Base {
int foo() override { return 100; }
};
void foo() {
Base *x = new Base{};
new (x) Derived1{};
int a = std::launder(x)->foo();
new (x) Derived2{};
int b = std::launder(x)->foo();
}
Here 2 calls of std::launder will produce @llvm.invariant.group.barrier,
which would be merged into one call, causing devirtualization
to devirtualize second call into Derived1::foo() instead of
Derived2::foo()
Reviewers: chandlerc, dberlin, hfinkel
Subscribers: llvm-commits, rsmith, amharc
Differential Revision: https://reviews.llvm.org/D31531
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300101 91177308-0d34-0410-b5e6-96231b3b80d8
Often you have a unique_ptr<T> where T supports LLVM's
casting methods, and you wish to cast it to a unique_ptr<U>.
Prior to this patch, this requires doing hacky things like:
unique_ptr<U> Casted;
if (isa<U>(Orig.get()))
Casted.reset(cast<U>(Orig.release()));
This is overly verbose, and it would be nice to just be able
to use unique_ptr directly with cast and dyn_cast. To this end,
this patch updates cast<> to work directly with unique_ptr<T>,
so you can now write:
auto Casted = cast<U>(std::move(Orig));
Since it's possible for dyn_cast<> to fail, however, we choose
to use a slightly different API here, because it's awkward to
write
if (auto Casted = dyn_cast<U>(std::move(Orig))) {}
when Orig may end up not having been moved at all. So the
interface for dyn_cast is
if (auto Casted = unique_dyn_cast<U>(Orig)) {}
Where the inclusion of `unique` in the name of the cast operator
re-affirms that regardless of success of or fail of the casting,
exactly one of the input value and the return value will contain
a non-null result.
Differential Revision: https://reviews.llvm.org/D31890
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300098 91177308-0d34-0410-b5e6-96231b3b80d8
On FreeBSD backtrace is not part of libc and depends on libexecinfo
being available. Instead of using manual checks we can use the builtin
CMake module FindBacktrace.cmake to detect availability of backtrace()
in a portable way.
Patch By: Alex Richardson
Differential Revision: https://reviews.llvm.org/D27143
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300062 91177308-0d34-0410-b5e6-96231b3b80d8
Since SystemZ supports vector element load/store instructions, there is no
need for extracts/inserts if a vector load/store gets scalarized.
This patch lets Target specify that it supports such instructions by means of
a new TTI hook that defaults to false.
The use for this is in the LoopVectorizer getScalarizationOverhead() method,
which will with this patch produce a smaller sum for a vector load/store on
SystemZ.
New test: test/Transforms/LoopVectorize/SystemZ/load-store-scalarization-cost.ll
Review: Adam Nemet
https://reviews.llvm.org/D30680
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300056 91177308-0d34-0410-b5e6-96231b3b80d8
getArithmeticInstrCost(), getShuffleCost(), getCastInstrCost(),
getCmpSelInstrCost(), getVectorInstrCost(), getMemoryOpCost(),
getInterleavedMemoryOpCost() implemented.
Interleaved access vectorization enabled.
BasicTTIImpl::getCastInstrCost() improved to check for legal extending loads,
in which case the cost of the z/sext instruction becomes 0.
Review: Ulrich Weigand, Renato Golin.
https://reviews.llvm.org/D29631
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300052 91177308-0d34-0410-b5e6-96231b3b80d8
not collide with the naming convention for template *arguments*. In at
least one case they actually collided and this confuses MSVC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300038 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
As far as instruction selection is concerned, all three appear to be same thing.
Support for these operands is experimental since AArch64 doesn't make use
of them and the in-tree targets that do use them (AMDGPU for
OperandWithDefaultOps, AMDGPU/ARM/Hexagon/Lanai for PredicateOperand, and ARM
for OperandWithDefaultOps) are not using tablegen-erated GlobalISel yet.
Reviewers: rovka, aditya_nandakumar, t.p.northover, qcolombet, ab
Reviewed By: rovka
Subscribers: inglorion, aemerson, rengolin, mehdi_amini, dberris, kristof.beyls, igorb, tpr, llvm-commits
Differential Revision: https://reviews.llvm.org/D31135
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300037 91177308-0d34-0410-b5e6-96231b3b80d8
and to expose a handle to represent the actual case rather than having
the iterator return a reference to itself.
All of this allows the iterator to be used with common STL facilities,
standard algorithms, etc.
Doing this exposed some missing facilities in the iterator facade that
I've fixed and required some work to the actual iterator to fully
support the necessary API.
Differential Revision: https://reviews.llvm.org/D31548
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300032 91177308-0d34-0410-b5e6-96231b3b80d8
Collection of PostDominatedByUnreachable and PostDominatedByColdCall have been
split out of heuristics itself. Update of the data happens now for each basic
block (before update for PostDominatedByColdCall might be skipped if
unreachable or matadata heuristic handled this basic block).
This separation allows re-ordering of heuristics without loosing
the post-domination information.
Reviewers: sanjoy, junbuml, vsk, chandlerc, reames
Reviewed By: chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31701
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300029 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
For now, it just wraps AttributeSetNode*. Eventually, it will hold
AvailableAttrs as an inline bitset, and adding and removing enum
attributes will be super cheap.
This sinks AttributeSetNode back down to lib/IR/AttributeImpl.h.
Reviewers: pete, chandlerc
Subscribers: llvm-commits, jfb
Differential Revision: https://reviews.llvm.org/D31940
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300014 91177308-0d34-0410-b5e6-96231b3b80d8
Analysis, it has Analysis passes, and once NewGVN is made an Analysis,
this removes the cross dependency from Analysis to Transform/Utils.
NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299980 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This lets PDB readers lookup type record data by type index in O(log n)
time. It also enables makes `cvdump -t` work on PDBs produced by LLD.
cvdump will not dump a PDB that doesn't have an index-to-offset table.
The table is sorted by type index, and has an entry every 8KB. Looking
up a type record by index is a binary search of this table, followed by
a scan of at most 8KB.
Reviewers: ruiu, zturner, inglorion
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299958 91177308-0d34-0410-b5e6-96231b3b80d8
From a user prospective, it forces the use of an annoying nullptr to mark the end of the vararg, and there's not type checking on the arguments.
The variadic template is an obvious solution to both issues.
Differential Revision: https://reviews.llvm.org/D31070
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299949 91177308-0d34-0410-b5e6-96231b3b80d8
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299925 91177308-0d34-0410-b5e6-96231b3b80d8
The getter was equivalent to AttributeList::getAttributes(unsigned),
which seems like a better way to express getting the AttributeSet for a
given index. This static helper was only used in one place anyway.
The constructor doesn't benefit from inlining and doesn't need to be in
a header.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299900 91177308-0d34-0410-b5e6-96231b3b80d8
This re-lands r299875.
I introduced a bug in Clang code responsible for replacing K&R, no
prototype declarations with a real function definition with a prototype.
The bug was here:
// Collect any return attributes from the call.
- if (oldAttrs.hasAttributes(llvm::AttributeList::ReturnIndex))
- newAttrs.push_back(llvm::AttributeList::get(newFn->getContext(),
- oldAttrs.getRetAttributes()));
+ newAttrs.push_back(oldAttrs.getRetAttributes());
Previously getRetAttributes() carried AttributeList::ReturnIndex in its
AttributeList. Now that we return the AttributeSetNode* directly, it no
longer carries that index, and we call this overload with a single node:
AttributeList::get(LLVMContext&, ArrayRef<AttributeSetNode*>)
That aborted with an assertion on x86_32 targets. I added an explicit
triple to the test and added CHECKs to help find issues like this in the
future sooner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299899 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM makes several assumptions about address space 0. However,
alloca is presently constrained to always return this address space.
There's no real way to avoid using alloca, so without this
there is no way to opt out of these assumptions.
The problematic assumptions include:
- That the pointer size used for the stack is the same size as
the code size pointer, which is also the maximum sized pointer.
- That 0 is an invalid, non-dereferencable pointer value.
These are problems for AMDGPU because alloca is used to
implement the private address space, which uses a 32-bit
index as the pointer value. Other pointers are 64-bit
and behave more like LLVM's notion of generic address
space. By changing the address space used for allocas,
we can change our generic pointer type to be LLVM's generic
pointer type which does have similar properties.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299888 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
AttributeList::get(Fn|Ret|Param)Attributes no longer creates a temporary
AttributeList just to hide the AttributeSetNode type.
I've also added a factory method to create AttributeLists from a
parallel array of AttributeSetNodes. I think this simplifies
construction of AttributeLists when rewriting function prototypes.
Previously we would test if a particular index had attributes, and
conditionally add a temporary attribute list to a vector. Now the
attribute set vector is parallel to the argument vector already that
these passes already construct.
My long term vision is to wrap AttributeSetNode* inside an AttributeSet
type that holds the enum attributes, but that will come in a follow up
change.
I haven't done any performance measurements for this change because
profiling hasn't shown that any of the affected code is hot.
Reviewers: pete, chandlerc, sanjoy, hfinkel
Reviewed By: pete
Subscribers: jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31198
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299875 91177308-0d34-0410-b5e6-96231b3b80d8
BitVector had methods for searching for the first and next
set bits, but it did not have analagous methods for finding
the first and next unset bits. This is useful when your ones
and zeros are grouped together and you want to iterate over
ranges of ones and zeros.
Differential Revision: https://reviews.llvm.org/D31802
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299857 91177308-0d34-0410-b5e6-96231b3b80d8
* Adds support for pointers to arrays, which was missing
* Adds some tests
* Improves consistency of const and volatile qualifiers
* Eliminates non-composable special case code for arrays and function by using
a more general recursive approach
* Has a hack for getting the calling convention into the right spot for
pointer-to-functions
Given the rapid changes happenning in llvm-pdbdump, this may be difficult to
merge.
Differential Revision: https://reviews.llvm.org/D31832
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299848 91177308-0d34-0410-b5e6-96231b3b80d8
1. Added some asserts to make sure concrete symbol types don't
get constructed with RawSymbols that have an incompatible
SymTag enum value.
2. Added new forwarding macros that auto-define an Id/Sym method
pair whenever there is a method that returns a SymIndexId.
Previously we would just provide one method that returned only
the SymIndexId and it was up to the caller to use the Session
object to get a pointer to the symbol. Now we automatically
get both the method that returns the Id, as well as a method
that returns the pointer directly with just one macro.
3. Added some methods for dumping straight to stdout that can
be used from inside the debugger for diagnostics during a
debug session.
4. Added a clone() method and a cast<T>() method to PDBSymbol
that can shorten some usage patterns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299831 91177308-0d34-0410-b5e6-96231b3b80d8
The original instruction might get legalized and erased and expanded
into intermediate instructions and the intermediate instructions might
fail legalization. This end up in reporting GISelFailure on the erased
instruction.
Instead report GISelFailure on the intermediate instruction which failed
legalization.
Reviewed by: ab
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299802 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r299766. This change appears to have broken the MIPS
buildbots. Reverting while I investigate.
Revert "[mips] Remove usage of debug only variable (NFC)"
This reverts commit r299769. Follow up commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299788 91177308-0d34-0410-b5e6-96231b3b80d8
By target hookifying getRegisterType, getNumRegisters, getVectorBreakdown,
backends can request that LLVM to scalarize vector types for calls
and returns.
The MIPS vector ABI requires that vector arguments and returns are passed in
integer registers. With SelectionDAG's new hooks, the MIPS backend can now
handle LLVM-IR with vector types in calls and returns. E.g.
'call @foo(<4 x i32> %4)'.
Previously these cases would be scalarized for the MIPS O32/N32/N64 ABI for
calls and returns if vector types were not legal. If vector types were legal,
a single 128bit vector argument would be assigned to a single 32 bit / 64 bit
integer register.
By teaching the MIPS backend to inspect the original types, it can now
implement the MIPS vector ABI which requires a particular method of
scalarizing vectors.
Previously, the MIPS backend relied on clang to scalarize types such as "call
@foo(<4 x float> %a) into "call @foo(i32 inreg %1, i32 inreg %2, i32 inreg %3,
i32 inreg %4)".
This patch enables the MIPS backend to take either form for vector types.
Reviewers: zoran.jovanovic, jaydeep, vkalintiris, slthakur
Differential Revision: https://reviews.llvm.org/D27845
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299766 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
getModRefInfo is meant to answer the question "what impact does this
instruction have on a given memory location" (not even another
instruction).
Long debate on this on IRC comes to the conclusion the answer should be "nothing special".
That is, a noalias volatile store does not affect a memory location
just by being volatile. Note: DSE and GVN and memdep currently
believe this, because memdep just goes behind AA's back after it says
"modref" right now.
see line 635 of memdep. Prior to this patch we would get modref there, then check aliasing,
and if it said noalias, we would continue.
getModRefInfo *already* has this same AA check, it just wasn't being used because volatile was
lumped in with ordering.
(I am separately testing whether this code in memdep is now dead except for the invariant load case)
Reviewers: jyknight, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31726
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299741 91177308-0d34-0410-b5e6-96231b3b80d8
This adjusts header file includes for headers and source files
in Core. In doing so, one dependency cycle is eliminated
because all the includes from Core to that project were dead
includes anyway. In places where some files in other projects
were only compiling due to a transitive include from another
header, fixups have been made so that those files also include
the header they need. Tested on Windows and Linux, and plan
to address failures on OSX and FreeBSD after watching the
bots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299714 91177308-0d34-0410-b5e6-96231b3b80d8
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D31070
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299699 91177308-0d34-0410-b5e6-96231b3b80d8
Use a combination of !associated, comdat, @llvm.compiler.used and
custom sections to allow dead stripping of globals and their asan
metadata. Sometimes.
Currently this works on LLD, which supports SHF_LINK_ORDER with
sh_link pointing to the associated section.
This also works on BFD, which seems to treat comdats as
all-or-nothing with respect to linker GC. There is a weird quirk
where the "first" global in each link is never GC-ed because of the
section symbols.
At this moment it does not work on Gold (as in the globals are never
stripped).
This is a re-land of r298158 rebased on D31358. This time,
asan.module_ctor is put in a comdat as well to avoid quadratic
behavior in Gold.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299697 91177308-0d34-0410-b5e6-96231b3b80d8
Create the constructor in the module pass.
This in needed for the GC-friendly globals change, where the constructor can be
put in a comdat in some cases, but we don't know about that in the function
pass.
This is a rebase of r298731 which was reverted due to a false alarm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299695 91177308-0d34-0410-b5e6-96231b3b80d8
memorydefs, not just stores. Along the way, we audit and fixup issues
about how we were tracking memory leaders, and improve the verifier
to notice more memory congruency issues.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299682 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Host CPU detection now supports Kryo, so we need to recognize it in ARM
target.
Reviewers: mcrosier, t.p.northover, rengolin, echristo, srhines
Reviewed By: t.p.northover, echristo
Subscribers: aemerson
Differential Revision: https://reviews.llvm.org/D31775
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299674 91177308-0d34-0410-b5e6-96231b3b80d8
This will allow orcError to be used in convertToErrorCode implementations,
which will help in transitioning Orc RPC to Error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299610 91177308-0d34-0410-b5e6-96231b3b80d8
This is a generic combine enabled via target hook to reduce icmp logic as discussed in:
https://bugs.llvm.org/show_bug.cgi?id=32401
It's likely that other targets will want to enable this hook for scalar transforms,
and there are probably other patterns that can use bitwise logic to reduce comparisons.
Note that we are missing an IR canonicalization for these patterns, and we will probably
prefer the pair-of-compares form in IR (shorter, more likely to fold).
Differential Revision: https://reviews.llvm.org/D31483
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299542 91177308-0d34-0410-b5e6-96231b3b80d8
A number of backends (AArch64, MIPS, ARM) have been using
MCContext::reportError to report issues such as out-of-range fixup values in
their TgtAsmBackend. This is great, but because MCContext couldn't easily be
threaded through to the adjustFixupValue helper function from its usual
callsite (applyFixup), these backends ended up adding an MCContext* argument
and adding another call to applyFixup to processFixupValue. Adding an
MCContext parameter to applyFixup makes this unnecessary, and even better -
applyFixup can take a reference to MCContext rather than a potentially null
pointer.
Differential Revision: https://reviews.llvm.org/D30264
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299529 91177308-0d34-0410-b5e6-96231b3b80d8
Decouple this setting from EnableIRPA.
To support function calls on AMDGPU, it is necessary to
report the global register usage throughout the kernel's
call graph, so callees need to be handled first.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299487 91177308-0d34-0410-b5e6-96231b3b80d8
stores with some fixes.
Summary:
This enables us to cache the clobbering access for stores, despite the
fact that we can't rewrite the use-def chains themselves.
Early testing shows that, after this change, for larger testcases, it
will be a significant net positive (memory and time) to remove the
walker caching.
Reviewers: george.burgess.iv, davide
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31567
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299486 91177308-0d34-0410-b5e6-96231b3b80d8
If an instruction has a true dependency, it makes sense for to use that
register for any undef read operands in the same instruction (we'll have
to wait for that register to become available anyway). This logic
was already implemented. However, the code would then still try to
revisit that instruction and break the dependency (and always fail,
since by definition a true dependency has to be live before the
instruction). Avoid revisiting such instructions as a performance
optimization. No functional change.
Differential Revision: https://reviews.llvm.org/D30173
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299467 91177308-0d34-0410-b5e6-96231b3b80d8
This patch optimizes two memory intrinsic operations: memset and memcpy based
on the profiled size of the operation. The high level transformation is like:
mem_op(..., size)
==>
switch (size) {
case s1:
mem_op(..., s1);
goto merge_bb;
case s2:
mem_op(..., s2);
goto merge_bb;
...
default:
mem_op(..., size);
goto merge_bb;
}
merge_bb:
Differential Revision: http://reviews.llvm.org/D28966
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299446 91177308-0d34-0410-b5e6-96231b3b80d8