//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the X86 specific subclass of TargetMachine. // //===----------------------------------------------------------------------===// #include "X86TargetMachine.h" #include "X86.h" #include "llvm/Module.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetMachineImpls.h" #include "llvm/Transforms/Scalar.h" #include "Support/CommandLine.h" #include "Support/Statistic.h" using namespace llvm; namespace { cl::opt NoPatternISel("disable-pattern-isel", cl::init(true), cl::desc("Use the 'simple' X86 instruction selector")); cl::opt NoSSAPeephole("disable-ssa-peephole", cl::init(true), cl::desc("Disable the ssa-based peephole optimizer " "(defaults to disabled)")); cl::opt DisableOutput("disable-x86-llc-output", cl::Hidden, cl::desc("Disable the X86 asm printer, for use " "when profiling the code generator.")); cl::opt NoSimpleISel("disable-simple-isel", cl::init(true), cl::desc("Use the hand coded 'simple' X86 instruction selector")); } // allocateX86TargetMachine - Allocate and return a subclass of TargetMachine // that implements the X86 backend. // TargetMachine *llvm::allocateX86TargetMachine(const Module &M, IntrinsicLowering *IL) { return new X86TargetMachine(M, IL); } /// X86TargetMachine ctor - Create an ILP32 architecture model /// X86TargetMachine::X86TargetMachine(const Module &M, IntrinsicLowering *IL) : TargetMachine("X86", IL, true, 4, 4, 4, 4, 4), FrameInfo(TargetFrameInfo::StackGrowsDown, 8/*16 for SSE*/, -4), JITInfo(*this) { } // addPassesToEmitAssembly - We currently use all of the same passes as the JIT // does to emit statically compiled machine code. bool X86TargetMachine::addPassesToEmitAssembly(PassManager &PM, std::ostream &Out) { // FIXME: Implement efficient support for garbage collection intrinsics. PM.add(createLowerGCPass()); // FIXME: Implement the invoke/unwind instructions! PM.add(createLowerInvokePass()); // FIXME: Implement the switch instruction in the instruction selector! PM.add(createLowerSwitchPass()); if (NoPatternISel && NoSimpleISel) PM.add(createX86SimpleInstructionSelector(*this)); else if (NoPatternISel) PM.add(createX86ReallySimpleInstructionSelector(*this)); else PM.add(createX86PatternInstructionSelector(*this)); // Run optional SSA-based machine code optimizations next... if (!NoSSAPeephole) PM.add(createX86SSAPeepholeOptimizerPass()); // Print the instruction selected machine code... if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); // Perform register allocation to convert to a concrete x86 representation PM.add(createRegisterAllocator()); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); PM.add(createX86FloatingPointStackifierPass()); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); // Insert prolog/epilog code. Eliminate abstract frame index references... PM.add(createPrologEpilogCodeInserter()); PM.add(createX86PeepholeOptimizerPass()); if (PrintMachineCode) // Print the register-allocated code PM.add(createX86CodePrinterPass(std::cerr, *this)); if (!DisableOutput) PM.add(createX86CodePrinterPass(Out, *this)); // Delete machine code for this function PM.add(createMachineCodeDeleter()); return false; // success! } /// addPassesToJITCompile - Add passes to the specified pass manager to /// implement a fast dynamic compiler for this target. Return true if this is /// not supported for this target. /// void X86JITInfo::addPassesToJITCompile(FunctionPassManager &PM) { // FIXME: Implement efficient support for garbage collection intrinsics. PM.add(createLowerGCPass()); // FIXME: Implement the invoke/unwind instructions! PM.add(createLowerInvokePass()); // FIXME: Implement the switch instruction in the instruction selector! PM.add(createLowerSwitchPass()); if (NoPatternISel) PM.add(createX86SimpleInstructionSelector(TM)); else PM.add(createX86PatternInstructionSelector(TM)); // Run optional SSA-based machine code optimizations next... if (!NoSSAPeephole) PM.add(createX86SSAPeepholeOptimizerPass()); // FIXME: Add SSA based peephole optimizer here. // Print the instruction selected machine code... if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); // Perform register allocation to convert to a concrete x86 representation PM.add(createRegisterAllocator()); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); PM.add(createX86FloatingPointStackifierPass()); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); // Insert prolog/epilog code. Eliminate abstract frame index references... PM.add(createPrologEpilogCodeInserter()); PM.add(createX86PeepholeOptimizerPass()); if (PrintMachineCode) // Print the register-allocated code PM.add(createX86CodePrinterPass(std::cerr, TM)); }