//===-- AutoUpgrade.cpp - Implement auto-upgrade helper functions ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the auto-upgrade helper functions. // This is where deprecated IR intrinsics and other IR features are updated to // current specifications. // //===----------------------------------------------------------------------===// #include "llvm/IR/AutoUpgrade.h" #include "llvm/IR/CFG.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Regex.h" #include using namespace llvm; // Upgrade the declarations of the SSE4.1 functions whose arguments have // changed their type from v4f32 to v2i64. static bool UpgradeSSE41Function(Function* F, Intrinsic::ID IID, Function *&NewFn) { // Check whether this is an old version of the function, which received // v4f32 arguments. Type *Arg0Type = F->getFunctionType()->getParamType(0); if (Arg0Type != VectorType::get(Type::getFloatTy(F->getContext()), 4)) return false; // Yes, it's old, replace it with new version. F->setName(F->getName() + ".old"); NewFn = Intrinsic::getDeclaration(F->getParent(), IID); return true; } // Upgrade the declarations of intrinsic functions whose 8-bit immediate mask // arguments have changed their type from i32 to i8. static bool UpgradeX86IntrinsicsWith8BitMask(Function *F, Intrinsic::ID IID, Function *&NewFn) { // Check that the last argument is an i32. Type *LastArgType = F->getFunctionType()->getParamType( F->getFunctionType()->getNumParams() - 1); if (!LastArgType->isIntegerTy(32)) return false; // Move this function aside and map down. F->setName(F->getName() + ".old"); NewFn = Intrinsic::getDeclaration(F->getParent(), IID); return true; } static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) { assert(F && "Illegal to upgrade a non-existent Function."); // Quickly eliminate it, if it's not a candidate. StringRef Name = F->getName(); if (Name.size() <= 8 || !Name.startswith("llvm.")) return false; Name = Name.substr(5); // Strip off "llvm." switch (Name[0]) { default: break; case 'a': { if (Name.startswith("arm.neon.vclz")) { Type* args[2] = { F->arg_begin()->getType(), Type::getInt1Ty(F->getContext()) }; // Can't use Intrinsic::getDeclaration here as it adds a ".i1" to // the end of the name. Change name from llvm.arm.neon.vclz.* to // llvm.ctlz.* FunctionType* fType = FunctionType::get(F->getReturnType(), args, false); NewFn = Function::Create(fType, F->getLinkage(), "llvm.ctlz." + Name.substr(14), F->getParent()); return true; } if (Name.startswith("arm.neon.vcnt")) { NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctpop, F->arg_begin()->getType()); return true; } Regex vldRegex("^arm\\.neon\\.vld([1234]|[234]lane)\\.v[a-z0-9]*$"); if (vldRegex.match(Name)) { auto fArgs = F->getFunctionType()->params(); SmallVector Tys(fArgs.begin(), fArgs.end()); // Can't use Intrinsic::getDeclaration here as the return types might // then only be structurally equal. FunctionType* fType = FunctionType::get(F->getReturnType(), Tys, false); NewFn = Function::Create(fType, F->getLinkage(), "llvm." + Name + ".p0i8", F->getParent()); return true; } Regex vstRegex("^arm\\.neon\\.vst([1234]|[234]lane)\\.v[a-z0-9]*$"); if (vstRegex.match(Name)) { static const Intrinsic::ID StoreInts[] = {Intrinsic::arm_neon_vst1, Intrinsic::arm_neon_vst2, Intrinsic::arm_neon_vst3, Intrinsic::arm_neon_vst4}; static const Intrinsic::ID StoreLaneInts[] = { Intrinsic::arm_neon_vst2lane, Intrinsic::arm_neon_vst3lane, Intrinsic::arm_neon_vst4lane }; auto fArgs = F->getFunctionType()->params(); Type *Tys[] = {fArgs[0], fArgs[1]}; if (Name.find("lane") == StringRef::npos) NewFn = Intrinsic::getDeclaration(F->getParent(), StoreInts[fArgs.size() - 3], Tys); else NewFn = Intrinsic::getDeclaration(F->getParent(), StoreLaneInts[fArgs.size() - 5], Tys); return true; } if (Name == "aarch64.thread.pointer" || Name == "arm.thread.pointer") { NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::thread_pointer); return true; } break; } case 'c': { if (Name.startswith("ctlz.") && F->arg_size() == 1) { F->setName(Name + ".old"); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz, F->arg_begin()->getType()); return true; } if (Name.startswith("cttz.") && F->arg_size() == 1) { F->setName(Name + ".old"); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::cttz, F->arg_begin()->getType()); return true; } break; } case 'o': // We only need to change the name to match the mangling including the // address space. if (F->arg_size() == 2 && Name.startswith("objectsize.")) { Type *Tys[2] = { F->getReturnType(), F->arg_begin()->getType() }; if (F->getName() != Intrinsic::getName(Intrinsic::objectsize, Tys)) { F->setName(Name + ".old"); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::objectsize, Tys); return true; } } break; case 's': if (Name == "stackprotectorcheck") { NewFn = nullptr; return true; } case 'x': { if (Name.startswith("x86.sse2.pcmpeq.") || Name.startswith("x86.sse2.pcmpgt.") || Name.startswith("x86.avx2.pcmpeq.") || Name.startswith("x86.avx2.pcmpgt.") || Name.startswith("x86.avx2.vbroadcast") || Name.startswith("x86.avx2.pbroadcast") || Name.startswith("x86.avx.vpermil.") || Name.startswith("x86.sse41.pmovsx") || Name.startswith("x86.sse41.pmovzx") || Name.startswith("x86.avx2.pmovsx") || Name.startswith("x86.avx2.pmovzx") || Name == "x86.sse2.cvtdq2pd" || Name == "x86.sse2.cvtps2pd" || Name == "x86.avx.cvtdq2.pd.256" || Name == "x86.avx.cvt.ps2.pd.256" || Name.startswith("x86.avx.vinsertf128.") || Name == "x86.avx2.vinserti128" || Name.startswith("x86.avx.vextractf128.") || Name == "x86.avx2.vextracti128" || Name.startswith("x86.avx.movnt.") || Name == "x86.sse2.storel.dq" || Name.startswith("x86.sse.storeu.") || Name.startswith("x86.sse2.storeu.") || Name.startswith("x86.avx.storeu.") || Name == "x86.sse42.crc32.64.8" || Name.startswith("x86.avx.vbroadcast.s") || Name.startswith("x86.sse2.psll.dq") || Name.startswith("x86.sse2.psrl.dq") || Name.startswith("x86.avx2.psll.dq") || Name.startswith("x86.avx2.psrl.dq") || Name == "x86.sse41.pblendw" || Name.startswith("x86.sse41.blendp") || Name.startswith("x86.avx.blend.p") || Name == "x86.avx2.pblendw" || Name.startswith("x86.avx2.pblendd.") || Name == "x86.avx2.vbroadcasti128" || Name == "x86.xop.vpcmov" || (Name.startswith("x86.xop.vpcom") && F->arg_size() == 2)) { NewFn = nullptr; return true; } // SSE4.1 ptest functions may have an old signature. if (Name.startswith("x86.sse41.ptest")) { if (Name == "x86.sse41.ptestc") return UpgradeSSE41Function(F, Intrinsic::x86_sse41_ptestc, NewFn); if (Name == "x86.sse41.ptestz") return UpgradeSSE41Function(F, Intrinsic::x86_sse41_ptestz, NewFn); if (Name == "x86.sse41.ptestnzc") return UpgradeSSE41Function(F, Intrinsic::x86_sse41_ptestnzc, NewFn); } // Several blend and other instructions with masks used the wrong number of // bits. if (Name == "x86.sse41.insertps") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_insertps, NewFn); if (Name == "x86.sse41.dppd") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_dppd, NewFn); if (Name == "x86.sse41.dpps") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_dpps, NewFn); if (Name == "x86.sse41.mpsadbw") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_sse41_mpsadbw, NewFn); if (Name == "x86.avx.dp.ps.256") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_avx_dp_ps_256, NewFn); if (Name == "x86.avx2.mpsadbw") return UpgradeX86IntrinsicsWith8BitMask(F, Intrinsic::x86_avx2_mpsadbw, NewFn); // frcz.ss/sd may need to have an argument dropped if (Name.startswith("x86.xop.vfrcz.ss") && F->arg_size() == 2) { F->setName(Name + ".old"); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_xop_vfrcz_ss); return true; } if (Name.startswith("x86.xop.vfrcz.sd") && F->arg_size() == 2) { F->setName(Name + ".old"); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_xop_vfrcz_sd); return true; } // Fix the FMA4 intrinsics to remove the 4 if (Name.startswith("x86.fma4.")) { F->setName("llvm.x86.fma" + Name.substr(8)); NewFn = F; return true; } break; } } // This may not belong here. This function is effectively being overloaded // to both detect an intrinsic which needs upgrading, and to provide the // upgraded form of the intrinsic. We should perhaps have two separate // functions for this. return false; } bool llvm::UpgradeIntrinsicFunction(Function *F, Function *&NewFn) { NewFn = nullptr; bool Upgraded = UpgradeIntrinsicFunction1(F, NewFn); assert(F != NewFn && "Intrinsic function upgraded to the same function"); // Upgrade intrinsic attributes. This does not change the function. if (NewFn) F = NewFn; if (Intrinsic::ID id = F->getIntrinsicID()) F->setAttributes(Intrinsic::getAttributes(F->getContext(), id)); return Upgraded; } bool llvm::UpgradeGlobalVariable(GlobalVariable *GV) { // Nothing to do yet. return false; } // Handles upgrading SSE2 and AVX2 PSLLDQ intrinsics by converting them // to byte shuffles. static Value *UpgradeX86PSLLDQIntrinsics(IRBuilder<> &Builder, LLVMContext &C, Value *Op, unsigned Shift) { Type *ResultTy = Op->getType(); unsigned NumElts = ResultTy->getVectorNumElements() * 8; // Bitcast from a 64-bit element type to a byte element type. Type *VecTy = VectorType::get(Type::getInt8Ty(C), NumElts); Op = Builder.CreateBitCast(Op, VecTy, "cast"); // We'll be shuffling in zeroes. Value *Res = Constant::getNullValue(VecTy); // If shift is less than 16, emit a shuffle to move the bytes. Otherwise, // we'll just return the zero vector. if (Shift < 16) { int Idxs[32]; // 256-bit version is split into two 16-byte lanes. for (unsigned l = 0; l != NumElts; l += 16) for (unsigned i = 0; i != 16; ++i) { unsigned Idx = NumElts + i - Shift; if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand. Idxs[l + i] = Idx + l; } Res = Builder.CreateShuffleVector(Res, Op, makeArrayRef(Idxs, NumElts)); } // Bitcast back to a 64-bit element type. return Builder.CreateBitCast(Res, ResultTy, "cast"); } // Handles upgrading SSE2 and AVX2 PSRLDQ intrinsics by converting them // to byte shuffles. static Value *UpgradeX86PSRLDQIntrinsics(IRBuilder<> &Builder, LLVMContext &C, Value *Op, unsigned Shift) { Type *ResultTy = Op->getType(); unsigned NumElts = ResultTy->getVectorNumElements() * 8; // Bitcast from a 64-bit element type to a byte element type. Type *VecTy = VectorType::get(Type::getInt8Ty(C), NumElts); Op = Builder.CreateBitCast(Op, VecTy, "cast"); // We'll be shuffling in zeroes. Value *Res = Constant::getNullValue(VecTy); // If shift is less than 16, emit a shuffle to move the bytes. Otherwise, // we'll just return the zero vector. if (Shift < 16) { int Idxs[32]; // 256-bit version is split into two 16-byte lanes. for (unsigned l = 0; l != NumElts; l += 16) for (unsigned i = 0; i != 16; ++i) { unsigned Idx = i + Shift; if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand. Idxs[l + i] = Idx + l; } Res = Builder.CreateShuffleVector(Op, Res, makeArrayRef(Idxs, NumElts)); } // Bitcast back to a 64-bit element type. return Builder.CreateBitCast(Res, ResultTy, "cast"); } // UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the // upgraded intrinsic. All argument and return casting must be provided in // order to seamlessly integrate with existing context. void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) { Function *F = CI->getCalledFunction(); LLVMContext &C = CI->getContext(); IRBuilder<> Builder(C); Builder.SetInsertPoint(CI->getParent(), CI->getIterator()); assert(F && "Intrinsic call is not direct?"); if (!NewFn) { // Get the Function's name. StringRef Name = F->getName(); Value *Rep; // Upgrade packed integer vector compares intrinsics to compare instructions if (Name.startswith("llvm.x86.sse2.pcmpeq.") || Name.startswith("llvm.x86.avx2.pcmpeq.")) { Rep = Builder.CreateICmpEQ(CI->getArgOperand(0), CI->getArgOperand(1), "pcmpeq"); // need to sign extend since icmp returns vector of i1 Rep = Builder.CreateSExt(Rep, CI->getType(), ""); } else if (Name.startswith("llvm.x86.sse2.pcmpgt.") || Name.startswith("llvm.x86.avx2.pcmpgt.")) { Rep = Builder.CreateICmpSGT(CI->getArgOperand(0), CI->getArgOperand(1), "pcmpgt"); // need to sign extend since icmp returns vector of i1 Rep = Builder.CreateSExt(Rep, CI->getType(), ""); } else if (Name == "llvm.x86.sse2.cvtdq2pd" || Name == "llvm.x86.sse2.cvtps2pd" || Name == "llvm.x86.avx.cvtdq2.pd.256" || Name == "llvm.x86.avx.cvt.ps2.pd.256") { // Lossless i32/float to double conversion. // Extract the bottom elements if necessary and convert to double vector. Value *Src = CI->getArgOperand(0); VectorType *SrcTy = cast(Src->getType()); VectorType *DstTy = cast(CI->getType()); Rep = CI->getArgOperand(0); unsigned NumDstElts = DstTy->getNumElements(); if (NumDstElts < SrcTy->getNumElements()) { assert(NumDstElts == 2 && "Unexpected vector size"); const int ShuffleMask[2] = { 0, 1 }; Rep = Builder.CreateShuffleVector(Rep, UndefValue::get(SrcTy), ShuffleMask); } bool Int2Double = (StringRef::npos != Name.find("cvtdq2")); if (Int2Double) Rep = Builder.CreateSIToFP(Rep, DstTy, "cvtdq2pd"); else Rep = Builder.CreateFPExt(Rep, DstTy, "cvtps2pd"); } else if (Name.startswith("llvm.x86.avx.movnt.")) { Module *M = F->getParent(); SmallVector Elts; Elts.push_back( ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(C), 1))); MDNode *Node = MDNode::get(C, Elts); Value *Arg0 = CI->getArgOperand(0); Value *Arg1 = CI->getArgOperand(1); // Convert the type of the pointer to a pointer to the stored type. Value *BC = Builder.CreateBitCast(Arg0, PointerType::getUnqual(Arg1->getType()), "cast"); StoreInst *SI = Builder.CreateAlignedStore(Arg1, BC, 32); SI->setMetadata(M->getMDKindID("nontemporal"), Node); // Remove intrinsic. CI->eraseFromParent(); return; } else if (Name == "llvm.x86.sse2.storel.dq") { Value *Arg0 = CI->getArgOperand(0); Value *Arg1 = CI->getArgOperand(1); Type *NewVecTy = VectorType::get(Type::getInt64Ty(C), 2); Value *BC0 = Builder.CreateBitCast(Arg1, NewVecTy, "cast"); Value *Elt = Builder.CreateExtractElement(BC0, (uint64_t)0); Value *BC = Builder.CreateBitCast(Arg0, PointerType::getUnqual(Elt->getType()), "cast"); Builder.CreateAlignedStore(Elt, BC, 1); // Remove intrinsic. CI->eraseFromParent(); return; } else if (Name.startswith("llvm.x86.sse.storeu.") || Name.startswith("llvm.x86.sse2.storeu.") || Name.startswith("llvm.x86.avx.storeu.")) { Value *Arg0 = CI->getArgOperand(0); Value *Arg1 = CI->getArgOperand(1); Arg0 = Builder.CreateBitCast(Arg0, PointerType::getUnqual(Arg1->getType()), "cast"); Builder.CreateAlignedStore(Arg1, Arg0, 1); // Remove intrinsic. CI->eraseFromParent(); return; } else if (Name.startswith("llvm.x86.xop.vpcom")) { Intrinsic::ID intID; if (Name.endswith("ub")) intID = Intrinsic::x86_xop_vpcomub; else if (Name.endswith("uw")) intID = Intrinsic::x86_xop_vpcomuw; else if (Name.endswith("ud")) intID = Intrinsic::x86_xop_vpcomud; else if (Name.endswith("uq")) intID = Intrinsic::x86_xop_vpcomuq; else if (Name.endswith("b")) intID = Intrinsic::x86_xop_vpcomb; else if (Name.endswith("w")) intID = Intrinsic::x86_xop_vpcomw; else if (Name.endswith("d")) intID = Intrinsic::x86_xop_vpcomd; else if (Name.endswith("q")) intID = Intrinsic::x86_xop_vpcomq; else llvm_unreachable("Unknown suffix"); Name = Name.substr(18); // strip off "llvm.x86.xop.vpcom" unsigned Imm; if (Name.startswith("lt")) Imm = 0; else if (Name.startswith("le")) Imm = 1; else if (Name.startswith("gt")) Imm = 2; else if (Name.startswith("ge")) Imm = 3; else if (Name.startswith("eq")) Imm = 4; else if (Name.startswith("ne")) Imm = 5; else if (Name.startswith("false")) Imm = 6; else if (Name.startswith("true")) Imm = 7; else llvm_unreachable("Unknown condition"); Function *VPCOM = Intrinsic::getDeclaration(F->getParent(), intID); Rep = Builder.CreateCall(VPCOM, {CI->getArgOperand(0), CI->getArgOperand(1), Builder.getInt8(Imm)}); } else if (Name == "llvm.x86.xop.vpcmov") { Value *Arg0 = CI->getArgOperand(0); Value *Arg1 = CI->getArgOperand(1); Value *Sel = CI->getArgOperand(2); unsigned NumElts = CI->getType()->getVectorNumElements(); Constant *MinusOne = ConstantVector::getSplat(NumElts, Builder.getInt64(-1)); Value *NotSel = Builder.CreateXor(Sel, MinusOne); Value *Sel0 = Builder.CreateAnd(Arg0, Sel); Value *Sel1 = Builder.CreateAnd(Arg1, NotSel); Rep = Builder.CreateOr(Sel0, Sel1); } else if (Name == "llvm.x86.sse42.crc32.64.8") { Function *CRC32 = Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_sse42_crc32_32_8); Value *Trunc0 = Builder.CreateTrunc(CI->getArgOperand(0), Type::getInt32Ty(C)); Rep = Builder.CreateCall(CRC32, {Trunc0, CI->getArgOperand(1)}); Rep = Builder.CreateZExt(Rep, CI->getType(), ""); } else if (Name.startswith("llvm.x86.avx.vbroadcast")) { // Replace broadcasts with a series of insertelements. Type *VecTy = CI->getType(); Type *EltTy = VecTy->getVectorElementType(); unsigned EltNum = VecTy->getVectorNumElements(); Value *Cast = Builder.CreateBitCast(CI->getArgOperand(0), EltTy->getPointerTo()); Value *Load = Builder.CreateLoad(EltTy, Cast); Type *I32Ty = Type::getInt32Ty(C); Rep = UndefValue::get(VecTy); for (unsigned I = 0; I < EltNum; ++I) Rep = Builder.CreateInsertElement(Rep, Load, ConstantInt::get(I32Ty, I)); } else if (Name.startswith("llvm.x86.sse41.pmovsx") || Name.startswith("llvm.x86.sse41.pmovzx") || Name.startswith("llvm.x86.avx2.pmovsx") || Name.startswith("llvm.x86.avx2.pmovzx")) { VectorType *SrcTy = cast(CI->getArgOperand(0)->getType()); VectorType *DstTy = cast(CI->getType()); unsigned NumDstElts = DstTy->getNumElements(); // Extract a subvector of the first NumDstElts lanes and sign/zero extend. SmallVector ShuffleMask; for (int i = 0; i != (int)NumDstElts; ++i) ShuffleMask.push_back(i); Value *SV = Builder.CreateShuffleVector( CI->getArgOperand(0), UndefValue::get(SrcTy), ShuffleMask); bool DoSext = (StringRef::npos != Name.find("pmovsx")); Rep = DoSext ? Builder.CreateSExt(SV, DstTy) : Builder.CreateZExt(SV, DstTy); } else if (Name == "llvm.x86.avx2.vbroadcasti128") { // Replace vbroadcasts with a vector shuffle. Type *VT = VectorType::get(Type::getInt64Ty(C), 2); Value *Op = Builder.CreatePointerCast(CI->getArgOperand(0), PointerType::getUnqual(VT)); Value *Load = Builder.CreateLoad(VT, Op); const int Idxs[4] = { 0, 1, 0, 1 }; Rep = Builder.CreateShuffleVector(Load, UndefValue::get(Load->getType()), Idxs); } else if (Name.startswith("llvm.x86.avx2.pbroadcast") || Name.startswith("llvm.x86.avx2.vbroadcast")) { // Replace vp?broadcasts with a vector shuffle. Value *Op = CI->getArgOperand(0); unsigned NumElts = CI->getType()->getVectorNumElements(); Type *MaskTy = VectorType::get(Type::getInt32Ty(C), NumElts); Rep = Builder.CreateShuffleVector(Op, UndefValue::get(Op->getType()), Constant::getNullValue(MaskTy)); } else if (Name == "llvm.x86.sse2.psll.dq" || Name == "llvm.x86.avx2.psll.dq") { // 128/256-bit shift left specified in bits. unsigned Shift = cast(CI->getArgOperand(1))->getZExtValue(); Rep = UpgradeX86PSLLDQIntrinsics(Builder, C, CI->getArgOperand(0), Shift / 8); // Shift is in bits. } else if (Name == "llvm.x86.sse2.psrl.dq" || Name == "llvm.x86.avx2.psrl.dq") { // 128/256-bit shift right specified in bits. unsigned Shift = cast(CI->getArgOperand(1))->getZExtValue(); Rep = UpgradeX86PSRLDQIntrinsics(Builder, C, CI->getArgOperand(0), Shift / 8); // Shift is in bits. } else if (Name == "llvm.x86.sse2.psll.dq.bs" || Name == "llvm.x86.avx2.psll.dq.bs") { // 128/256-bit shift left specified in bytes. unsigned Shift = cast(CI->getArgOperand(1))->getZExtValue(); Rep = UpgradeX86PSLLDQIntrinsics(Builder, C, CI->getArgOperand(0), Shift); } else if (Name == "llvm.x86.sse2.psrl.dq.bs" || Name == "llvm.x86.avx2.psrl.dq.bs") { // 128/256-bit shift right specified in bytes. unsigned Shift = cast(CI->getArgOperand(1))->getZExtValue(); Rep = UpgradeX86PSRLDQIntrinsics(Builder, C, CI->getArgOperand(0), Shift); } else if (Name == "llvm.x86.sse41.pblendw" || Name.startswith("llvm.x86.sse41.blendp") || Name.startswith("llvm.x86.avx.blend.p") || Name == "llvm.x86.avx2.pblendw" || Name.startswith("llvm.x86.avx2.pblendd.")) { Value *Op0 = CI->getArgOperand(0); Value *Op1 = CI->getArgOperand(1); unsigned Imm = cast (CI->getArgOperand(2))->getZExtValue(); VectorType *VecTy = cast(CI->getType()); unsigned NumElts = VecTy->getNumElements(); SmallVector Idxs; for (unsigned i = 0; i != NumElts; ++i) { unsigned Idx = ((Imm >> (i%8)) & 1) ? i + NumElts : i; Idxs.push_back(Builder.getInt32(Idx)); } Rep = Builder.CreateShuffleVector(Op0, Op1, ConstantVector::get(Idxs)); } else if (Name.startswith("llvm.x86.avx.vinsertf128.") || Name == "llvm.x86.avx2.vinserti128") { Value *Op0 = CI->getArgOperand(0); Value *Op1 = CI->getArgOperand(1); unsigned Imm = cast(CI->getArgOperand(2))->getZExtValue(); VectorType *VecTy = cast(CI->getType()); unsigned NumElts = VecTy->getNumElements(); // Mask off the high bits of the immediate value; hardware ignores those. Imm = Imm & 1; // Extend the second operand into a vector that is twice as big. Value *UndefV = UndefValue::get(Op1->getType()); SmallVector Idxs; for (unsigned i = 0; i != NumElts; ++i) { Idxs.push_back(Builder.getInt32(i)); } Rep = Builder.CreateShuffleVector(Op1, UndefV, ConstantVector::get(Idxs)); // Insert the second operand into the first operand. // Note that there is no guarantee that instruction lowering will actually // produce a vinsertf128 instruction for the created shuffles. In // particular, the 0 immediate case involves no lane changes, so it can // be handled as a blend. // Example of shuffle mask for 32-bit elements: // Imm = 1 // Imm = 0 SmallVector Idxs2; // The low half of the result is either the low half of the 1st operand // or the low half of the 2nd operand (the inserted vector). for (unsigned i = 0; i != NumElts / 2; ++i) { unsigned Idx = Imm ? i : (i + NumElts); Idxs2.push_back(Builder.getInt32(Idx)); } // The high half of the result is either the low half of the 2nd operand // (the inserted vector) or the high half of the 1st operand. for (unsigned i = NumElts / 2; i != NumElts; ++i) { unsigned Idx = Imm ? (i + NumElts / 2) : i; Idxs2.push_back(Builder.getInt32(Idx)); } Rep = Builder.CreateShuffleVector(Op0, Rep, ConstantVector::get(Idxs2)); } else if (Name.startswith("llvm.x86.avx.vextractf128.") || Name == "llvm.x86.avx2.vextracti128") { Value *Op0 = CI->getArgOperand(0); unsigned Imm = cast(CI->getArgOperand(1))->getZExtValue(); VectorType *VecTy = cast(CI->getType()); unsigned NumElts = VecTy->getNumElements(); // Mask off the high bits of the immediate value; hardware ignores those. Imm = Imm & 1; // Get indexes for either the high half or low half of the input vector. SmallVector Idxs(NumElts); for (unsigned i = 0; i != NumElts; ++i) { unsigned Idx = Imm ? (i + NumElts) : i; Idxs[i] = Builder.getInt32(Idx); } Value *UndefV = UndefValue::get(Op0->getType()); Rep = Builder.CreateShuffleVector(Op0, UndefV, ConstantVector::get(Idxs)); } else if (Name == "llvm.stackprotectorcheck") { Rep = nullptr; } else { bool PD128 = false, PD256 = false, PS128 = false, PS256 = false; if (Name == "llvm.x86.avx.vpermil.pd.256") PD256 = true; else if (Name == "llvm.x86.avx.vpermil.pd") PD128 = true; else if (Name == "llvm.x86.avx.vpermil.ps.256") PS256 = true; else if (Name == "llvm.x86.avx.vpermil.ps") PS128 = true; if (PD256 || PD128 || PS256 || PS128) { Value *Op0 = CI->getArgOperand(0); unsigned Imm = cast(CI->getArgOperand(1))->getZExtValue(); SmallVector Idxs; if (PD128) for (unsigned i = 0; i != 2; ++i) Idxs.push_back(Builder.getInt32((Imm >> i) & 0x1)); else if (PD256) for (unsigned l = 0; l != 4; l+=2) for (unsigned i = 0; i != 2; ++i) Idxs.push_back(Builder.getInt32(((Imm >> (l+i)) & 0x1) + l)); else if (PS128) for (unsigned i = 0; i != 4; ++i) Idxs.push_back(Builder.getInt32((Imm >> (2 * i)) & 0x3)); else if (PS256) for (unsigned l = 0; l != 8; l+=4) for (unsigned i = 0; i != 4; ++i) Idxs.push_back(Builder.getInt32(((Imm >> (2 * i)) & 0x3) + l)); else llvm_unreachable("Unexpected function"); Rep = Builder.CreateShuffleVector(Op0, Op0, ConstantVector::get(Idxs)); } else { llvm_unreachable("Unknown function for CallInst upgrade."); } } if (Rep) CI->replaceAllUsesWith(Rep); CI->eraseFromParent(); return; } std::string Name = CI->getName(); if (!Name.empty()) CI->setName(Name + ".old"); switch (NewFn->getIntrinsicID()) { default: llvm_unreachable("Unknown function for CallInst upgrade."); case Intrinsic::arm_neon_vld1: case Intrinsic::arm_neon_vld2: case Intrinsic::arm_neon_vld3: case Intrinsic::arm_neon_vld4: case Intrinsic::arm_neon_vld2lane: case Intrinsic::arm_neon_vld3lane: case Intrinsic::arm_neon_vld4lane: case Intrinsic::arm_neon_vst1: case Intrinsic::arm_neon_vst2: case Intrinsic::arm_neon_vst3: case Intrinsic::arm_neon_vst4: case Intrinsic::arm_neon_vst2lane: case Intrinsic::arm_neon_vst3lane: case Intrinsic::arm_neon_vst4lane: { SmallVector Args(CI->arg_operands().begin(), CI->arg_operands().end()); CI->replaceAllUsesWith(Builder.CreateCall(NewFn, Args)); CI->eraseFromParent(); return; } case Intrinsic::ctlz: case Intrinsic::cttz: assert(CI->getNumArgOperands() == 1 && "Mismatch between function args and call args"); CI->replaceAllUsesWith(Builder.CreateCall( NewFn, {CI->getArgOperand(0), Builder.getFalse()}, Name)); CI->eraseFromParent(); return; case Intrinsic::objectsize: CI->replaceAllUsesWith(Builder.CreateCall( NewFn, {CI->getArgOperand(0), CI->getArgOperand(1)}, Name)); CI->eraseFromParent(); return; case Intrinsic::ctpop: { CI->replaceAllUsesWith(Builder.CreateCall(NewFn, {CI->getArgOperand(0)})); CI->eraseFromParent(); return; } case Intrinsic::x86_xop_vfrcz_ss: case Intrinsic::x86_xop_vfrcz_sd: CI->replaceAllUsesWith( Builder.CreateCall(NewFn, {CI->getArgOperand(1)}, Name)); CI->eraseFromParent(); return; case Intrinsic::x86_sse41_ptestc: case Intrinsic::x86_sse41_ptestz: case Intrinsic::x86_sse41_ptestnzc: { // The arguments for these intrinsics used to be v4f32, and changed // to v2i64. This is purely a nop, since those are bitwise intrinsics. // So, the only thing required is a bitcast for both arguments. // First, check the arguments have the old type. Value *Arg0 = CI->getArgOperand(0); if (Arg0->getType() != VectorType::get(Type::getFloatTy(C), 4)) return; // Old intrinsic, add bitcasts Value *Arg1 = CI->getArgOperand(1); Type *NewVecTy = VectorType::get(Type::getInt64Ty(C), 2); Value *BC0 = Builder.CreateBitCast(Arg0, NewVecTy, "cast"); Value *BC1 = Builder.CreateBitCast(Arg1, NewVecTy, "cast"); CallInst *NewCall = Builder.CreateCall(NewFn, {BC0, BC1}, Name); CI->replaceAllUsesWith(NewCall); CI->eraseFromParent(); return; } case Intrinsic::x86_sse41_insertps: case Intrinsic::x86_sse41_dppd: case Intrinsic::x86_sse41_dpps: case Intrinsic::x86_sse41_mpsadbw: case Intrinsic::x86_avx_dp_ps_256: case Intrinsic::x86_avx2_mpsadbw: { // Need to truncate the last argument from i32 to i8 -- this argument models // an inherently 8-bit immediate operand to these x86 instructions. SmallVector Args(CI->arg_operands().begin(), CI->arg_operands().end()); // Replace the last argument with a trunc. Args.back() = Builder.CreateTrunc(Args.back(), Type::getInt8Ty(C), "trunc"); CallInst *NewCall = Builder.CreateCall(NewFn, Args); CI->replaceAllUsesWith(NewCall); CI->eraseFromParent(); return; } case Intrinsic::thread_pointer: { CI->replaceAllUsesWith(Builder.CreateCall(NewFn, {})); CI->eraseFromParent(); return; } } } void llvm::UpgradeCallsToIntrinsic(Function *F) { assert(F && "Illegal attempt to upgrade a non-existent intrinsic."); // Check if this function should be upgraded and get the replacement function // if there is one. Function *NewFn; if (UpgradeIntrinsicFunction(F, NewFn)) { // Replace all users of the old function with the new function or new // instructions. This is not a range loop because the call is deleted. for (auto UI = F->user_begin(), UE = F->user_end(); UI != UE; ) if (CallInst *CI = dyn_cast(*UI++)) UpgradeIntrinsicCall(CI, NewFn); // Remove old function, no longer used, from the module. F->eraseFromParent(); } } void llvm::UpgradeInstWithTBAATag(Instruction *I) { MDNode *MD = I->getMetadata(LLVMContext::MD_tbaa); assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); // Check if the tag uses struct-path aware TBAA format. if (isa(MD->getOperand(0)) && MD->getNumOperands() >= 3) return; if (MD->getNumOperands() == 3) { Metadata *Elts[] = {MD->getOperand(0), MD->getOperand(1)}; MDNode *ScalarType = MDNode::get(I->getContext(), Elts); // Create a MDNode Metadata *Elts2[] = {ScalarType, ScalarType, ConstantAsMetadata::get(Constant::getNullValue( Type::getInt64Ty(I->getContext()))), MD->getOperand(2)}; I->setMetadata(LLVMContext::MD_tbaa, MDNode::get(I->getContext(), Elts2)); } else { // Create a MDNode Metadata *Elts[] = {MD, MD, ConstantAsMetadata::get(Constant::getNullValue( Type::getInt64Ty(I->getContext())))}; I->setMetadata(LLVMContext::MD_tbaa, MDNode::get(I->getContext(), Elts)); } } Instruction *llvm::UpgradeBitCastInst(unsigned Opc, Value *V, Type *DestTy, Instruction *&Temp) { if (Opc != Instruction::BitCast) return nullptr; Temp = nullptr; Type *SrcTy = V->getType(); if (SrcTy->isPtrOrPtrVectorTy() && DestTy->isPtrOrPtrVectorTy() && SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace()) { LLVMContext &Context = V->getContext(); // We have no information about target data layout, so we assume that // the maximum pointer size is 64bit. Type *MidTy = Type::getInt64Ty(Context); Temp = CastInst::Create(Instruction::PtrToInt, V, MidTy); return CastInst::Create(Instruction::IntToPtr, Temp, DestTy); } return nullptr; } Value *llvm::UpgradeBitCastExpr(unsigned Opc, Constant *C, Type *DestTy) { if (Opc != Instruction::BitCast) return nullptr; Type *SrcTy = C->getType(); if (SrcTy->isPtrOrPtrVectorTy() && DestTy->isPtrOrPtrVectorTy() && SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace()) { LLVMContext &Context = C->getContext(); // We have no information about target data layout, so we assume that // the maximum pointer size is 64bit. Type *MidTy = Type::getInt64Ty(Context); return ConstantExpr::getIntToPtr(ConstantExpr::getPtrToInt(C, MidTy), DestTy); } return nullptr; } /// Check the debug info version number, if it is out-dated, drop the debug /// info. Return true if module is modified. bool llvm::UpgradeDebugInfo(Module &M) { unsigned Version = getDebugMetadataVersionFromModule(M); if (Version == DEBUG_METADATA_VERSION) return false; bool RetCode = StripDebugInfo(M); if (RetCode) { DiagnosticInfoDebugMetadataVersion DiagVersion(M, Version); M.getContext().diagnose(DiagVersion); } return RetCode; } bool llvm::UpgradeModuleFlags(Module &M) { const NamedMDNode *ModFlags = M.getModuleFlagsMetadata(); if (!ModFlags) return false; bool HasObjCFlag = false, HasClassProperties = false; for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) { MDNode *Op = ModFlags->getOperand(I); if (Op->getNumOperands() < 2) continue; MDString *ID = dyn_cast_or_null(Op->getOperand(1)); if (!ID) continue; if (ID->getString() == "Objective-C Image Info Version") HasObjCFlag = true; if (ID->getString() == "Objective-C Class Properties") HasClassProperties = true; } // "Objective-C Class Properties" is recently added for Objective-C. We // upgrade ObjC bitcodes to contain a "Objective-C Class Properties" module // flag of value 0, so we can correclty report error when trying to link // an ObjC bitcode without this module flag with an ObjC bitcode with this // module flag. if (HasObjCFlag && !HasClassProperties) { M.addModuleFlag(llvm::Module::Error, "Objective-C Class Properties", (uint32_t)0); return true; } return false; } static bool isOldLoopArgument(Metadata *MD) { auto *T = dyn_cast_or_null(MD); if (!T) return false; if (T->getNumOperands() < 1) return false; auto *S = dyn_cast_or_null(T->getOperand(0)); if (!S) return false; return S->getString().startswith("llvm.vectorizer."); } static MDString *upgradeLoopTag(LLVMContext &C, StringRef OldTag) { StringRef OldPrefix = "llvm.vectorizer."; assert(OldTag.startswith(OldPrefix) && "Expected old prefix"); if (OldTag == "llvm.vectorizer.unroll") return MDString::get(C, "llvm.loop.interleave.count"); return MDString::get( C, (Twine("llvm.loop.vectorize.") + OldTag.drop_front(OldPrefix.size())) .str()); } static Metadata *upgradeLoopArgument(Metadata *MD) { auto *T = dyn_cast_or_null(MD); if (!T) return MD; if (T->getNumOperands() < 1) return MD; auto *OldTag = dyn_cast_or_null(T->getOperand(0)); if (!OldTag) return MD; if (!OldTag->getString().startswith("llvm.vectorizer.")) return MD; // This has an old tag. Upgrade it. SmallVector Ops; Ops.reserve(T->getNumOperands()); Ops.push_back(upgradeLoopTag(T->getContext(), OldTag->getString())); for (unsigned I = 1, E = T->getNumOperands(); I != E; ++I) Ops.push_back(T->getOperand(I)); return MDTuple::get(T->getContext(), Ops); } MDNode *llvm::upgradeInstructionLoopAttachment(MDNode &N) { auto *T = dyn_cast(&N); if (!T) return &N; if (!llvm::any_of(T->operands(), isOldLoopArgument)) return &N; SmallVector Ops; Ops.reserve(T->getNumOperands()); for (Metadata *MD : T->operands()) Ops.push_back(upgradeLoopArgument(MD)); return MDTuple::get(T->getContext(), Ops); }