//===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveDebugVariables analysis. // // Remove all DBG_VALUE instructions referencing virtual registers and replace // them with a data structure tracking where live user variables are kept - in a // virtual register or in a stack slot. // // Allow the data structure to be updated during register allocation when values // are moved between registers and stack slots. Finally emit new DBG_VALUE // instructions after register allocation is complete. // //===----------------------------------------------------------------------===// #include "LiveDebugVariables.h" #include "llvm/ADT/IntervalMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/LexicalScopes.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Value.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include using namespace llvm; #define DEBUG_TYPE "livedebug" static cl::opt EnableLDV("live-debug-variables", cl::init(true), cl::desc("Enable the live debug variables pass"), cl::Hidden); STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); char LiveDebugVariables::ID = 0; INITIALIZE_PASS_BEGIN(LiveDebugVariables, "livedebugvars", "Debug Variable Analysis", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_END(LiveDebugVariables, "livedebugvars", "Debug Variable Analysis", false, false) void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequiredTransitive(); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID), pImpl(nullptr) { initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); } /// LocMap - Map of where a user value is live, and its location. typedef IntervalMap LocMap; namespace { /// UserValueScopes - Keeps track of lexical scopes associated with a /// user value's source location. class UserValueScopes { DebugLoc DL; LexicalScopes &LS; SmallPtrSet LBlocks; public: UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(D), LS(L) {} /// dominates - Return true if current scope dominates at least one machine /// instruction in a given machine basic block. bool dominates(MachineBasicBlock *MBB) { if (LBlocks.empty()) LS.getMachineBasicBlocks(DL, LBlocks); return LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB); } }; } // end anonymous namespace /// UserValue - A user value is a part of a debug info user variable. /// /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register /// holds part of a user variable. The part is identified by a byte offset. /// /// UserValues are grouped into equivalence classes for easier searching. Two /// user values are related if they refer to the same variable, or if they are /// held by the same virtual register. The equivalence class is the transitive /// closure of that relation. namespace { class LDVImpl; class UserValue { const MDNode *Variable; ///< The debug info variable we are part of. const MDNode *Expression; ///< Any complex address expression. unsigned offset; ///< Byte offset into variable. bool IsIndirect; ///< true if this is a register-indirect+offset value. DebugLoc dl; ///< The debug location for the variable. This is ///< used by dwarf writer to find lexical scope. UserValue *leader; ///< Equivalence class leader. UserValue *next; ///< Next value in equivalence class, or null. /// Numbered locations referenced by locmap. SmallVector locations; /// Map of slot indices where this value is live. LocMap locInts; /// coalesceLocation - After LocNo was changed, check if it has become /// identical to another location, and coalesce them. This may cause LocNo or /// a later location to be erased, but no earlier location will be erased. void coalesceLocation(unsigned LocNo); /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo. void insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, unsigned LocNo, LiveIntervals &LIS, const TargetInstrInfo &TII); /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs /// is live. Returns true if any changes were made. bool splitLocation(unsigned OldLocNo, ArrayRef NewRegs, LiveIntervals &LIS); public: /// UserValue - Create a new UserValue. UserValue(const MDNode *var, const MDNode *expr, unsigned o, bool i, DebugLoc L, LocMap::Allocator &alloc) : Variable(var), Expression(expr), offset(o), IsIndirect(i), dl(L), leader(this), next(nullptr), locInts(alloc) {} /// getLeader - Get the leader of this value's equivalence class. UserValue *getLeader() { UserValue *l = leader; while (l != l->leader) l = l->leader; return leader = l; } /// getNext - Return the next UserValue in the equivalence class. UserValue *getNext() const { return next; } /// match - Does this UserValue match the parameters? bool match(const MDNode *Var, const MDNode *Expr, const DILocation *IA, unsigned Offset, bool indirect) const { return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA && Offset == offset && indirect == IsIndirect; } /// merge - Merge equivalence classes. static UserValue *merge(UserValue *L1, UserValue *L2) { L2 = L2->getLeader(); if (!L1) return L2; L1 = L1->getLeader(); if (L1 == L2) return L1; // Splice L2 before L1's members. UserValue *End = L2; while (End->next) { End->leader = L1; End = End->next; } End->leader = L1; End->next = L1->next; L1->next = L2; return L1; } /// getLocationNo - Return the location number that matches Loc. unsigned getLocationNo(const MachineOperand &LocMO) { if (LocMO.isReg()) { if (LocMO.getReg() == 0) return ~0u; // For register locations we dont care about use/def and other flags. for (unsigned i = 0, e = locations.size(); i != e; ++i) if (locations[i].isReg() && locations[i].getReg() == LocMO.getReg() && locations[i].getSubReg() == LocMO.getSubReg()) return i; } else for (unsigned i = 0, e = locations.size(); i != e; ++i) if (LocMO.isIdenticalTo(locations[i])) return i; locations.push_back(LocMO); // We are storing a MachineOperand outside a MachineInstr. locations.back().clearParent(); // Don't store def operands. if (locations.back().isReg()) locations.back().setIsUse(); return locations.size() - 1; } /// mapVirtRegs - Ensure that all virtual register locations are mapped. void mapVirtRegs(LDVImpl *LDV); /// addDef - Add a definition point to this value. void addDef(SlotIndex Idx, const MachineOperand &LocMO) { // Add a singular (Idx,Idx) -> Loc mapping. LocMap::iterator I = locInts.find(Idx); if (!I.valid() || I.start() != Idx) I.insert(Idx, Idx.getNextSlot(), getLocationNo(LocMO)); else // A later DBG_VALUE at the same SlotIndex overrides the old location. I.setValue(getLocationNo(LocMO)); } /// extendDef - Extend the current definition as far as possible down the /// dominator tree. Stop when meeting an existing def or when leaving the live /// range of VNI. /// End points where VNI is no longer live are added to Kills. /// @param Idx Starting point for the definition. /// @param LocNo Location number to propagate. /// @param LR Restrict liveness to where LR has the value VNI. May be null. /// @param VNI When LR is not null, this is the value to restrict to. /// @param Kills Append end points of VNI's live range to Kills. /// @param LIS Live intervals analysis. /// @param MDT Dominator tree. void extendDef(SlotIndex Idx, unsigned LocNo, LiveRange *LR, const VNInfo *VNI, SmallVectorImpl *Kills, LiveIntervals &LIS, MachineDominatorTree &MDT, UserValueScopes &UVS); /// addDefsFromCopies - The value in LI/LocNo may be copies to other /// registers. Determine if any of the copies are available at the kill /// points, and add defs if possible. /// @param LI Scan for copies of the value in LI->reg. /// @param LocNo Location number of LI->reg. /// @param Kills Points where the range of LocNo could be extended. /// @param NewDefs Append (Idx, LocNo) of inserted defs here. void addDefsFromCopies(LiveInterval *LI, unsigned LocNo, const SmallVectorImpl &Kills, SmallVectorImpl > &NewDefs, MachineRegisterInfo &MRI, LiveIntervals &LIS); /// computeIntervals - Compute the live intervals of all locations after /// collecting all their def points. void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, LiveIntervals &LIS, MachineDominatorTree &MDT, UserValueScopes &UVS); /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is /// live. Returns true if any changes were made. bool splitRegister(unsigned OldLocNo, ArrayRef NewRegs, LiveIntervals &LIS); /// rewriteLocations - Rewrite virtual register locations according to the /// provided virtual register map. void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI); /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, const TargetInstrInfo &TRI); /// getDebugLoc - Return DebugLoc of this UserValue. DebugLoc getDebugLoc() { return dl;} void print(raw_ostream &, const TargetRegisterInfo *); }; } // namespace /// LDVImpl - Implementation of the LiveDebugVariables pass. namespace { class LDVImpl { LiveDebugVariables &pass; LocMap::Allocator allocator; MachineFunction *MF; LiveIntervals *LIS; LexicalScopes LS; MachineDominatorTree *MDT; const TargetRegisterInfo *TRI; /// Whether emitDebugValues is called. bool EmitDone; /// Whether the machine function is modified during the pass. bool ModifiedMF; /// userValues - All allocated UserValue instances. SmallVector, 8> userValues; /// Map virtual register to eq class leader. typedef DenseMap VRMap; VRMap virtRegToEqClass; /// Map user variable to eq class leader. typedef DenseMap UVMap; UVMap userVarMap; /// getUserValue - Find or create a UserValue. UserValue *getUserValue(const MDNode *Var, const MDNode *Expr, unsigned Offset, bool IsIndirect, DebugLoc DL); /// lookupVirtReg - Find the EC leader for VirtReg or null. UserValue *lookupVirtReg(unsigned VirtReg); /// handleDebugValue - Add DBG_VALUE instruction to our maps. /// @param MI DBG_VALUE instruction /// @param Idx Last valid SLotIndex before instruction. /// @return True if the DBG_VALUE instruction should be deleted. bool handleDebugValue(MachineInstr *MI, SlotIndex Idx); /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding /// a UserValue def for each instruction. /// @param mf MachineFunction to be scanned. /// @return True if any debug values were found. bool collectDebugValues(MachineFunction &mf); /// computeIntervals - Compute the live intervals of all user values after /// collecting all their def points. void computeIntervals(); public: LDVImpl(LiveDebugVariables *ps) : pass(*ps), MF(nullptr), EmitDone(false), ModifiedMF(false) {} bool runOnMachineFunction(MachineFunction &mf); /// clear - Release all memory. void clear() { MF = nullptr; userValues.clear(); virtRegToEqClass.clear(); userVarMap.clear(); // Make sure we call emitDebugValues if the machine function was modified. assert((!ModifiedMF || EmitDone) && "Dbg values are not emitted in LDV"); EmitDone = false; ModifiedMF = false; LS.reset(); } /// mapVirtReg - Map virtual register to an equivalence class. void mapVirtReg(unsigned VirtReg, UserValue *EC); /// splitRegister - Replace all references to OldReg with NewRegs. void splitRegister(unsigned OldReg, ArrayRef NewRegs); /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. void emitDebugValues(VirtRegMap *VRM); void print(raw_ostream&); }; } // namespace static void printDebugLoc(DebugLoc DL, raw_ostream &CommentOS, const LLVMContext &Ctx) { if (!DL) return; auto *Scope = cast(DL.getScope()); // Omit the directory, because it's likely to be long and uninteresting. CommentOS << Scope->getFilename(); CommentOS << ':' << DL.getLine(); if (DL.getCol() != 0) CommentOS << ':' << DL.getCol(); DebugLoc InlinedAtDL = DL.getInlinedAt(); if (!InlinedAtDL) return; CommentOS << " @[ "; printDebugLoc(InlinedAtDL, CommentOS, Ctx); CommentOS << " ]"; } static void printExtendedName(raw_ostream &OS, const DILocalVariable *V, const DILocation *DL) { const LLVMContext &Ctx = V->getContext(); StringRef Res = V->getName(); if (!Res.empty()) OS << Res << "," << V->getLine(); if (auto *InlinedAt = DL->getInlinedAt()) { if (DebugLoc InlinedAtDL = InlinedAt) { OS << " @["; printDebugLoc(InlinedAtDL, OS, Ctx); OS << "]"; } } } void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { auto *DV = cast(Variable); OS << "!\""; printExtendedName(OS, DV, dl); OS << "\"\t"; if (offset) OS << '+' << offset; for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { OS << " [" << I.start() << ';' << I.stop() << "):"; if (I.value() == ~0u) OS << "undef"; else OS << I.value(); } for (unsigned i = 0, e = locations.size(); i != e; ++i) { OS << " Loc" << i << '='; locations[i].print(OS, TRI); } OS << '\n'; } void LDVImpl::print(raw_ostream &OS) { OS << "********** DEBUG VARIABLES **********\n"; for (unsigned i = 0, e = userValues.size(); i != e; ++i) userValues[i]->print(OS, TRI); } void UserValue::coalesceLocation(unsigned LocNo) { unsigned KeepLoc = 0; for (unsigned e = locations.size(); KeepLoc != e; ++KeepLoc) { if (KeepLoc == LocNo) continue; if (locations[KeepLoc].isIdenticalTo(locations[LocNo])) break; } // No matches. if (KeepLoc == locations.size()) return; // Keep the smaller location, erase the larger one. unsigned EraseLoc = LocNo; if (KeepLoc > EraseLoc) std::swap(KeepLoc, EraseLoc); locations.erase(locations.begin() + EraseLoc); // Rewrite values. for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { unsigned v = I.value(); if (v == EraseLoc) I.setValue(KeepLoc); // Coalesce when possible. else if (v > EraseLoc) I.setValueUnchecked(v-1); // Avoid coalescing with untransformed values. } } void UserValue::mapVirtRegs(LDVImpl *LDV) { for (unsigned i = 0, e = locations.size(); i != e; ++i) if (locations[i].isReg() && TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) LDV->mapVirtReg(locations[i].getReg(), this); } UserValue *LDVImpl::getUserValue(const MDNode *Var, const MDNode *Expr, unsigned Offset, bool IsIndirect, DebugLoc DL) { UserValue *&Leader = userVarMap[Var]; if (Leader) { UserValue *UV = Leader->getLeader(); Leader = UV; for (; UV; UV = UV->getNext()) if (UV->match(Var, Expr, DL->getInlinedAt(), Offset, IsIndirect)) return UV; } userValues.push_back( make_unique(Var, Expr, Offset, IsIndirect, DL, allocator)); UserValue *UV = userValues.back().get(); Leader = UserValue::merge(Leader, UV); return UV; } void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); UserValue *&Leader = virtRegToEqClass[VirtReg]; Leader = UserValue::merge(Leader, EC); } UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) return UV->getLeader(); return nullptr; } bool LDVImpl::handleDebugValue(MachineInstr *MI, SlotIndex Idx) { // DBG_VALUE loc, offset, variable if (MI->getNumOperands() != 4 || !(MI->getOperand(1).isReg() || MI->getOperand(1).isImm()) || !MI->getOperand(2).isMetadata()) { DEBUG(dbgs() << "Can't handle " << *MI); return false; } // Get or create the UserValue for (variable,offset). bool IsIndirect = MI->isIndirectDebugValue(); unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; const MDNode *Var = MI->getDebugVariable(); const MDNode *Expr = MI->getDebugExpression(); //here. UserValue *UV = getUserValue(Var, Expr, Offset, IsIndirect, MI->getDebugLoc()); UV->addDef(Idx, MI->getOperand(0)); return true; } bool LDVImpl::collectDebugValues(MachineFunction &mf) { bool Changed = false; for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; ++MFI) { MachineBasicBlock *MBB = &*MFI; for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); MBBI != MBBE;) { if (!MBBI->isDebugValue()) { ++MBBI; continue; } // DBG_VALUE has no slot index, use the previous instruction instead. SlotIndex Idx = MBBI == MBB->begin() ? LIS->getMBBStartIdx(MBB) : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); // Handle consecutive DBG_VALUE instructions with the same slot index. do { if (handleDebugValue(MBBI, Idx)) { MBBI = MBB->erase(MBBI); Changed = true; } else ++MBBI; } while (MBBI != MBBE && MBBI->isDebugValue()); } } return Changed; } /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a /// data-flow analysis to propagate them beyond basic block boundaries. void UserValue::extendDef(SlotIndex Idx, unsigned LocNo, LiveRange *LR, const VNInfo *VNI, SmallVectorImpl *Kills, LiveIntervals &LIS, MachineDominatorTree &MDT, UserValueScopes &UVS) { SlotIndex Start = Idx; MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); SlotIndex Stop = LIS.getMBBEndIdx(MBB); LocMap::iterator I = locInts.find(Start); // Limit to VNI's live range. bool ToEnd = true; if (LR && VNI) { LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); if (!Segment || Segment->valno != VNI) { if (Kills) Kills->push_back(Start); return; } if (Segment->end < Stop) { Stop = Segment->end; ToEnd = false; } } // There could already be a short def at Start. if (I.valid() && I.start() <= Start) { // Stop when meeting a different location or an already extended interval. Start = Start.getNextSlot(); if (I.value() != LocNo || I.stop() != Start) return; // This is a one-slot placeholder. Just skip it. ++I; } // Limited by the next def. if (I.valid() && I.start() < Stop) { Stop = I.start(); ToEnd = false; } // Limited by VNI's live range. else if (!ToEnd && Kills) Kills->push_back(Stop); if (Start < Stop) I.insert(Start, Stop, LocNo); } void UserValue::addDefsFromCopies(LiveInterval *LI, unsigned LocNo, const SmallVectorImpl &Kills, SmallVectorImpl > &NewDefs, MachineRegisterInfo &MRI, LiveIntervals &LIS) { if (Kills.empty()) return; // Don't track copies from physregs, there are too many uses. if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) return; // Collect all the (vreg, valno) pairs that are copies of LI. SmallVector, 8> CopyValues; for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { MachineInstr *MI = MO.getParent(); // Copies of the full value. if (MO.getSubReg() || !MI->isCopy()) continue; unsigned DstReg = MI->getOperand(0).getReg(); // Don't follow copies to physregs. These are usually setting up call // arguments, and the argument registers are always call clobbered. We are // better off in the source register which could be a callee-saved register, // or it could be spilled. if (!TargetRegisterInfo::isVirtualRegister(DstReg)) continue; // Is LocNo extended to reach this copy? If not, another def may be blocking // it, or we are looking at a wrong value of LI. SlotIndex Idx = LIS.getInstructionIndex(*MI); LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); if (!I.valid() || I.value() != LocNo) continue; if (!LIS.hasInterval(DstReg)) continue; LiveInterval *DstLI = &LIS.getInterval(DstReg); const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); CopyValues.push_back(std::make_pair(DstLI, DstVNI)); } if (CopyValues.empty()) return; DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n'); // Try to add defs of the copied values for each kill point. for (unsigned i = 0, e = Kills.size(); i != e; ++i) { SlotIndex Idx = Kills[i]; for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { LiveInterval *DstLI = CopyValues[j].first; const VNInfo *DstVNI = CopyValues[j].second; if (DstLI->getVNInfoAt(Idx) != DstVNI) continue; // Check that there isn't already a def at Idx LocMap::iterator I = locInts.find(Idx); if (I.valid() && I.start() <= Idx) continue; DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" << DstVNI->id << " in " << *DstLI << '\n'); MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); I.insert(Idx, Idx.getNextSlot(), LocNo); NewDefs.push_back(std::make_pair(Idx, LocNo)); break; } } } void UserValue::computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, LiveIntervals &LIS, MachineDominatorTree &MDT, UserValueScopes &UVS) { SmallVector, 16> Defs; // Collect all defs to be extended (Skipping undefs). for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) if (I.value() != ~0u) Defs.push_back(std::make_pair(I.start(), I.value())); // Extend all defs, and possibly add new ones along the way. for (unsigned i = 0; i != Defs.size(); ++i) { SlotIndex Idx = Defs[i].first; unsigned LocNo = Defs[i].second; const MachineOperand &Loc = locations[LocNo]; if (!Loc.isReg()) { extendDef(Idx, LocNo, nullptr, nullptr, nullptr, LIS, MDT, UVS); continue; } // Register locations are constrained to where the register value is live. if (TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { LiveInterval *LI = nullptr; const VNInfo *VNI = nullptr; if (LIS.hasInterval(Loc.getReg())) { LI = &LIS.getInterval(Loc.getReg()); VNI = LI->getVNInfoAt(Idx); } SmallVector Kills; extendDef(Idx, LocNo, LI, VNI, &Kills, LIS, MDT, UVS); if (LI) addDefsFromCopies(LI, LocNo, Kills, Defs, MRI, LIS); continue; } // For physregs, use the live range of the first regunit as a guide. unsigned Unit = *MCRegUnitIterator(Loc.getReg(), &TRI); LiveRange *LR = &LIS.getRegUnit(Unit); const VNInfo *VNI = LR->getVNInfoAt(Idx); // Don't track copies from physregs, it is too expensive. extendDef(Idx, LocNo, LR, VNI, nullptr, LIS, MDT, UVS); } // Finally, erase all the undefs. for (LocMap::iterator I = locInts.begin(); I.valid();) if (I.value() == ~0u) I.erase(); else ++I; } void LDVImpl::computeIntervals() { for (unsigned i = 0, e = userValues.size(); i != e; ++i) { UserValueScopes UVS(userValues[i]->getDebugLoc(), LS); userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, *MDT, UVS); userValues[i]->mapVirtRegs(this); } } bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { clear(); MF = &mf; LIS = &pass.getAnalysis(); MDT = &pass.getAnalysis(); TRI = mf.getSubtarget().getRegisterInfo(); LS.initialize(mf); DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " << mf.getName() << " **********\n"); bool Changed = collectDebugValues(mf); computeIntervals(); DEBUG(print(dbgs())); ModifiedMF = Changed; return Changed; } static void removeDebugValues(MachineFunction &mf) { for (MachineBasicBlock &MBB : mf) { for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { if (!MBBI->isDebugValue()) { ++MBBI; continue; } MBBI = MBB.erase(MBBI); } } } bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { if (!EnableLDV) return false; if (!mf.getFunction()->getSubprogram()) { removeDebugValues(mf); return false; } if (!pImpl) pImpl = new LDVImpl(this); return static_cast(pImpl)->runOnMachineFunction(mf); } void LiveDebugVariables::releaseMemory() { if (pImpl) static_cast(pImpl)->clear(); } LiveDebugVariables::~LiveDebugVariables() { if (pImpl) delete static_cast(pImpl); } //===----------------------------------------------------------------------===// // Live Range Splitting //===----------------------------------------------------------------------===// bool UserValue::splitLocation(unsigned OldLocNo, ArrayRef NewRegs, LiveIntervals& LIS) { DEBUG({ dbgs() << "Splitting Loc" << OldLocNo << '\t'; print(dbgs(), nullptr); }); bool DidChange = false; LocMap::iterator LocMapI; LocMapI.setMap(locInts); for (unsigned i = 0; i != NewRegs.size(); ++i) { LiveInterval *LI = &LIS.getInterval(NewRegs[i]); if (LI->empty()) continue; // Don't allocate the new LocNo until it is needed. unsigned NewLocNo = ~0u; // Iterate over the overlaps between locInts and LI. LocMapI.find(LI->beginIndex()); if (!LocMapI.valid()) continue; LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); LiveInterval::iterator LIE = LI->end(); while (LocMapI.valid() && LII != LIE) { // At this point, we know that LocMapI.stop() > LII->start. LII = LI->advanceTo(LII, LocMapI.start()); if (LII == LIE) break; // Now LII->end > LocMapI.start(). Do we have an overlap? if (LocMapI.value() == OldLocNo && LII->start < LocMapI.stop()) { // Overlapping correct location. Allocate NewLocNo now. if (NewLocNo == ~0u) { MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); MO.setSubReg(locations[OldLocNo].getSubReg()); NewLocNo = getLocationNo(MO); DidChange = true; } SlotIndex LStart = LocMapI.start(); SlotIndex LStop = LocMapI.stop(); // Trim LocMapI down to the LII overlap. if (LStart < LII->start) LocMapI.setStartUnchecked(LII->start); if (LStop > LII->end) LocMapI.setStopUnchecked(LII->end); // Change the value in the overlap. This may trigger coalescing. LocMapI.setValue(NewLocNo); // Re-insert any removed OldLocNo ranges. if (LStart < LocMapI.start()) { LocMapI.insert(LStart, LocMapI.start(), OldLocNo); ++LocMapI; assert(LocMapI.valid() && "Unexpected coalescing"); } if (LStop > LocMapI.stop()) { ++LocMapI; LocMapI.insert(LII->end, LStop, OldLocNo); --LocMapI; } } // Advance to the next overlap. if (LII->end < LocMapI.stop()) { if (++LII == LIE) break; LocMapI.advanceTo(LII->start); } else { ++LocMapI; if (!LocMapI.valid()) break; LII = LI->advanceTo(LII, LocMapI.start()); } } } // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. locations.erase(locations.begin() + OldLocNo); LocMapI.goToBegin(); while (LocMapI.valid()) { unsigned v = LocMapI.value(); if (v == OldLocNo) { DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' << LocMapI.stop() << ")\n"); LocMapI.erase(); } else { if (v > OldLocNo) LocMapI.setValueUnchecked(v-1); ++LocMapI; } } DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);}); return DidChange; } bool UserValue::splitRegister(unsigned OldReg, ArrayRef NewRegs, LiveIntervals &LIS) { bool DidChange = false; // Split locations referring to OldReg. Iterate backwards so splitLocation can // safely erase unused locations. for (unsigned i = locations.size(); i ; --i) { unsigned LocNo = i-1; const MachineOperand *Loc = &locations[LocNo]; if (!Loc->isReg() || Loc->getReg() != OldReg) continue; DidChange |= splitLocation(LocNo, NewRegs, LIS); } return DidChange; } void LDVImpl::splitRegister(unsigned OldReg, ArrayRef NewRegs) { bool DidChange = false; for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); if (!DidChange) return; // Map all of the new virtual registers. UserValue *UV = lookupVirtReg(OldReg); for (unsigned i = 0; i != NewRegs.size(); ++i) mapVirtReg(NewRegs[i], UV); } void LiveDebugVariables:: splitRegister(unsigned OldReg, ArrayRef NewRegs, LiveIntervals &LIS) { if (pImpl) static_cast(pImpl)->splitRegister(OldReg, NewRegs); } void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI) { // Iterate over locations in reverse makes it easier to handle coalescing. for (unsigned i = locations.size(); i ; --i) { unsigned LocNo = i-1; MachineOperand &Loc = locations[LocNo]; // Only virtual registers are rewritten. if (!Loc.isReg() || !Loc.getReg() || !TargetRegisterInfo::isVirtualRegister(Loc.getReg())) continue; unsigned VirtReg = Loc.getReg(); if (VRM.isAssignedReg(VirtReg) && TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { // This can create a %noreg operand in rare cases when the sub-register // index is no longer available. That means the user value is in a // non-existent sub-register, and %noreg is exactly what we want. Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { // FIXME: Translate SubIdx to a stackslot offset. Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); } else { Loc.setReg(0); Loc.setSubReg(0); } coalesceLocation(LocNo); } } /// findInsertLocation - Find an iterator for inserting a DBG_VALUE /// instruction. static MachineBasicBlock::iterator findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS) { SlotIndex Start = LIS.getMBBStartIdx(MBB); Idx = Idx.getBaseIndex(); // Try to find an insert location by going backwards from Idx. MachineInstr *MI; while (!(MI = LIS.getInstructionFromIndex(Idx))) { // We've reached the beginning of MBB. if (Idx == Start) { MachineBasicBlock::iterator I = MBB->SkipPHIsAndLabels(MBB->begin()); return I; } Idx = Idx.getPrevIndex(); } // Don't insert anything after the first terminator, though. return MI->isTerminator() ? MBB->getFirstTerminator() : std::next(MachineBasicBlock::iterator(MI)); } void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, unsigned LocNo, LiveIntervals &LIS, const TargetInstrInfo &TII) { MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); MachineOperand &Loc = locations[LocNo]; ++NumInsertedDebugValues; assert(cast(Variable) ->isValidLocationForIntrinsic(getDebugLoc()) && "Expected inlined-at fields to agree"); if (Loc.isReg()) BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE), IsIndirect, Loc.getReg(), offset, Variable, Expression); else BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) .addOperand(Loc) .addImm(offset) .addMetadata(Variable) .addMetadata(Expression); } void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, const TargetInstrInfo &TII) { MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); for (LocMap::const_iterator I = locInts.begin(); I.valid();) { SlotIndex Start = I.start(); SlotIndex Stop = I.stop(); unsigned LocNo = I.value(); DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << LocNo); MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); insertDebugValue(&*MBB, Start, LocNo, LIS, TII); // This interval may span multiple basic blocks. // Insert a DBG_VALUE into each one. while(Stop > MBBEnd) { // Move to the next block. Start = MBBEnd; if (++MBB == MFEnd) break; MBBEnd = LIS.getMBBEndIdx(&*MBB); DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); insertDebugValue(&*MBB, Start, LocNo, LIS, TII); } DEBUG(dbgs() << '\n'); if (MBB == MFEnd) break; ++I; } } void LDVImpl::emitDebugValues(VirtRegMap *VRM) { DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); if (!MF) return; const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); for (unsigned i = 0, e = userValues.size(); i != e; ++i) { DEBUG(userValues[i]->print(dbgs(), TRI)); userValues[i]->rewriteLocations(*VRM, *TRI); userValues[i]->emitDebugValues(VRM, *LIS, *TII); } EmitDone = true; } void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { if (pImpl) static_cast(pImpl)->emitDebugValues(VRM); } bool LiveDebugVariables::doInitialization(Module &M) { return Pass::doInitialization(M); } #ifndef NDEBUG LLVM_DUMP_METHOD void LiveDebugVariables::dump() { if (pImpl) static_cast(pImpl)->print(dbgs()); } #endif