//===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMFixupKinds.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCDirectives.h" #include "llvm/MC/MCELFObjectWriter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCMachObjectWriter.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/Object/MachOFormat.h" #include "llvm/Support/ELF.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetAsmBackend.h" #include "llvm/Target/TargetRegistry.h" using namespace llvm; namespace { class ARMMachObjectWriter : public MCMachObjectTargetWriter { public: ARMMachObjectWriter(bool Is64Bit, uint32_t CPUType, uint32_t CPUSubtype) : MCMachObjectTargetWriter(Is64Bit, CPUType, CPUSubtype, /*UseAggressiveSymbolFolding=*/true) {} }; class ARMELFObjectWriter : public MCELFObjectTargetWriter { public: ARMELFObjectWriter(Triple::OSType OSType) : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSType, ELF::EM_ARM, /*HasRelocationAddend*/ false) {} }; class ARMAsmBackend : public TargetAsmBackend { bool isThumbMode; // Currently emitting Thumb code. public: ARMAsmBackend(const Target &T) : TargetAsmBackend(), isThumbMode(false) {} unsigned getNumFixupKinds() const { return ARM::NumTargetFixupKinds; } const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const { const static MCFixupKindInfo Infos[ARM::NumTargetFixupKinds] = { // This table *must* be in the order that the fixup_* kinds are defined in // ARMFixupKinds.h. // // Name Offset (bits) Size (bits) Flags { "fixup_arm_ldst_pcrel_12", 1, 24, MCFixupKindInfo::FKF_IsPCRel }, { "fixup_t2_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, { "fixup_arm_pcrel_10", 1, 24, MCFixupKindInfo::FKF_IsPCRel }, { "fixup_t2_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, { "fixup_thumb_adr_pcrel_10",0, 8, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, { "fixup_arm_adr_pcrel_12", 1, 24, MCFixupKindInfo::FKF_IsPCRel }, { "fixup_t2_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, { "fixup_arm_branch", 0, 24, MCFixupKindInfo::FKF_IsPCRel }, { "fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel }, { "fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel }, { "fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel }, { "fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel }, { "fixup_arm_thumb_blx", 7, 21, MCFixupKindInfo::FKF_IsPCRel }, { "fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel }, { "fixup_arm_thumb_cp", 1, 8, MCFixupKindInfo::FKF_IsPCRel }, { "fixup_arm_thumb_bcc", 1, 8, MCFixupKindInfo::FKF_IsPCRel }, { "fixup_arm_movt_hi16", 0, 16, 0 }, { "fixup_arm_movw_lo16", 0, 16, 0 }, { "fixup_arm_movt_hi16_pcrel", 0, 16, MCFixupKindInfo::FKF_IsPCRel }, { "fixup_arm_movw_lo16_pcrel", 0, 16, MCFixupKindInfo::FKF_IsPCRel }, }; if (Kind < FirstTargetFixupKind) return TargetAsmBackend::getFixupKindInfo(Kind); assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && "Invalid kind!"); return Infos[Kind - FirstTargetFixupKind]; } bool MayNeedRelaxation(const MCInst &Inst) const; void RelaxInstruction(const MCInst &Inst, MCInst &Res) const; bool WriteNopData(uint64_t Count, MCObjectWriter *OW) const; void HandleAssemblerFlag(MCAssemblerFlag Flag) { switch (Flag) { default: break; case MCAF_Code16: setIsThumb(true); break; case MCAF_Code32: setIsThumb(false); break; } } unsigned getPointerSize() const { return 4; } bool isThumb() const { return isThumbMode; } void setIsThumb(bool it) { isThumbMode = it; } }; } // end anonymous namespace bool ARMAsmBackend::MayNeedRelaxation(const MCInst &Inst) const { // FIXME: Thumb targets, different move constant targets.. return false; } void ARMAsmBackend::RelaxInstruction(const MCInst &Inst, MCInst &Res) const { assert(0 && "ARMAsmBackend::RelaxInstruction() unimplemented"); return; } bool ARMAsmBackend::WriteNopData(uint64_t Count, MCObjectWriter *OW) const { if (isThumb()) { // FIXME: 0xbf00 is the ARMv7 value. For v6 and before, we'll need to // use 0x46c0 (which is a 'mov r8, r8' insn). uint64_t NumNops = Count / 2; for (uint64_t i = 0; i != NumNops; ++i) OW->Write16(0xbf00); if (Count & 1) OW->Write8(0); return true; } // ARM mode uint64_t NumNops = Count / 4; for (uint64_t i = 0; i != NumNops; ++i) OW->Write32(0xe1a00000); switch (Count % 4) { default: break; // No leftover bytes to write case 1: OW->Write8(0); break; case 2: OW->Write16(0); break; case 3: OW->Write16(0); OW->Write8(0xa0); break; } return true; } static unsigned adjustFixupValue(unsigned Kind, uint64_t Value) { switch (Kind) { default: llvm_unreachable("Unknown fixup kind!"); case FK_Data_1: case FK_Data_2: case FK_Data_4: return Value; case ARM::fixup_arm_movt_hi16: case ARM::fixup_arm_movw_lo16: case ARM::fixup_arm_movt_hi16_pcrel: case ARM::fixup_arm_movw_lo16_pcrel: { unsigned Hi4 = (Value & 0xF000) >> 12; unsigned Lo12 = Value & 0x0FFF; // inst{19-16} = Hi4; // inst{11-0} = Lo12; Value = (Hi4 << 16) | (Lo12); return Value; } case ARM::fixup_arm_ldst_pcrel_12: // ARM PC-relative values are offset by 8. Value -= 4; // FALLTHROUGH case ARM::fixup_t2_ldst_pcrel_12: { // Offset by 4, adjusted by two due to the half-word ordering of thumb. Value -= 4; bool isAdd = true; if ((int64_t)Value < 0) { Value = -Value; isAdd = false; } assert ((Value < 4096) && "Out of range pc-relative fixup value!"); Value |= isAdd << 23; // Same addressing mode as fixup_arm_pcrel_10, // but with 16-bit halfwords swapped. if (Kind == ARM::fixup_t2_ldst_pcrel_12) { uint64_t swapped = (Value & 0xFFFF0000) >> 16; swapped |= (Value & 0x0000FFFF) << 16; return swapped; } return Value; } case ARM::fixup_thumb_adr_pcrel_10: return ((Value - 4) >> 2) & 0xff; case ARM::fixup_arm_adr_pcrel_12: { // ARM PC-relative values are offset by 8. Value -= 8; unsigned opc = 4; // bits {24-21}. Default to add: 0b0100 if ((int64_t)Value < 0) { Value = -Value; opc = 2; // 0b0010 } assert(ARM_AM::getSOImmVal(Value) != -1 && "Out of range pc-relative fixup value!"); // Encode the immediate and shift the opcode into place. return ARM_AM::getSOImmVal(Value) | (opc << 21); } case ARM::fixup_t2_adr_pcrel_12: { Value -= 4; unsigned opc = 0; if ((int64_t)Value < 0) { Value = -Value; opc = 5; } uint32_t out = (opc << 21); out |= (Value & 0x800) << 14; out |= (Value & 0x700) << 4; out |= (Value & 0x0FF); uint64_t swapped = (out & 0xFFFF0000) >> 16; swapped |= (out & 0x0000FFFF) << 16; return swapped; } case ARM::fixup_arm_branch: // These values don't encode the low two bits since they're always zero. // Offset by 8 just as above. return 0xffffff & ((Value - 8) >> 2); case ARM::fixup_t2_uncondbranch: { Value = Value - 4; Value >>= 1; // Low bit is not encoded. uint32_t out = 0; bool I = Value & 0x800000; bool J1 = Value & 0x400000; bool J2 = Value & 0x200000; J1 ^= I; J2 ^= I; out |= I << 26; // S bit out |= !J1 << 13; // J1 bit out |= !J2 << 11; // J2 bit out |= (Value & 0x1FF800) << 5; // imm6 field out |= (Value & 0x0007FF); // imm11 field uint64_t swapped = (out & 0xFFFF0000) >> 16; swapped |= (out & 0x0000FFFF) << 16; return swapped; } case ARM::fixup_t2_condbranch: { Value = Value - 4; Value >>= 1; // Low bit is not encoded. uint64_t out = 0; out |= (Value & 0x80000) << 7; // S bit out |= (Value & 0x40000) >> 7; // J2 bit out |= (Value & 0x20000) >> 4; // J1 bit out |= (Value & 0x1F800) << 5; // imm6 field out |= (Value & 0x007FF); // imm11 field uint32_t swapped = (out & 0xFFFF0000) >> 16; swapped |= (out & 0x0000FFFF) << 16; return swapped; } case ARM::fixup_arm_thumb_bl: { // The value doesn't encode the low bit (always zero) and is offset by // four. The value is encoded into disjoint bit positions in the destination // opcode. x = unchanged, I = immediate value bit, S = sign extension bit // // BL: xxxxxSIIIIIIIIII xxxxxIIIIIIIIIII // // Note that the halfwords are stored high first, low second; so we need // to transpose the fixup value here to map properly. unsigned isNeg = (int64_t(Value) < 0) ? 1 : 0; uint32_t Binary = 0; Value = 0x3fffff & ((Value - 4) >> 1); Binary = (Value & 0x7ff) << 16; // Low imm11 value. Binary |= (Value & 0x1ffc00) >> 11; // High imm10 value. Binary |= isNeg << 10; // Sign bit. return Binary; } case ARM::fixup_arm_thumb_blx: { // The value doesn't encode the low two bits (always zero) and is offset by // four (see fixup_arm_thumb_cp). The value is encoded into disjoint bit // positions in the destination opcode. x = unchanged, I = immediate value // bit, S = sign extension bit, 0 = zero. // // BLX: xxxxxSIIIIIIIIII xxxxxIIIIIIIIII0 // // Note that the halfwords are stored high first, low second; so we need // to transpose the fixup value here to map properly. unsigned isNeg = (int64_t(Value) < 0) ? 1 : 0; uint32_t Binary = 0; Value = 0xfffff & ((Value - 2) >> 2); Binary = (Value & 0x3ff) << 17; // Low imm10L value. Binary |= (Value & 0xffc00) >> 10; // High imm10H value. Binary |= isNeg << 10; // Sign bit. return Binary; } case ARM::fixup_arm_thumb_cp: // Offset by 4, and don't encode the low two bits. Two bytes of that // 'off by 4' is implicitly handled by the half-word ordering of the // Thumb encoding, so we only need to adjust by 2 here. return ((Value - 2) >> 2) & 0xff; case ARM::fixup_arm_thumb_cb: { // Offset by 4 and don't encode the lower bit, which is always 0. uint32_t Binary = (Value - 4) >> 1; return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3); } case ARM::fixup_arm_thumb_br: // Offset by 4 and don't encode the lower bit, which is always 0. return ((Value - 4) >> 1) & 0x7ff; case ARM::fixup_arm_thumb_bcc: // Offset by 4 and don't encode the lower bit, which is always 0. return ((Value - 4) >> 1) & 0xff; case ARM::fixup_arm_pcrel_10: Value = Value - 4; // ARM fixups offset by an additional word and don't // need to adjust for the half-word ordering. // Fall through. case ARM::fixup_t2_pcrel_10: { // Offset by 4, adjusted by two due to the half-word ordering of thumb. Value = Value - 4; bool isAdd = true; if ((int64_t)Value < 0) { Value = -Value; isAdd = false; } // These values don't encode the low two bits since they're always zero. Value >>= 2; assert ((Value < 256) && "Out of range pc-relative fixup value!"); Value |= isAdd << 23; // Same addressing mode as fixup_arm_pcrel_10, // but with 16-bit halfwords swapped. if (Kind == ARM::fixup_t2_pcrel_10) { uint32_t swapped = (Value & 0xFFFF0000) >> 16; swapped |= (Value & 0x0000FFFF) << 16; return swapped; } return Value; } } } namespace { // FIXME: This should be in a separate file. // ELF is an ELF of course... class ELFARMAsmBackend : public ARMAsmBackend { public: Triple::OSType OSType; ELFARMAsmBackend(const Target &T, Triple::OSType _OSType) : ARMAsmBackend(T), OSType(_OSType) { } void ApplyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize, uint64_t Value) const; MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return createELFObjectWriter(new ARMELFObjectWriter(OSType), OS, /*IsLittleEndian*/ true); } }; // FIXME: Raise this to share code between Darwin and ELF. void ELFARMAsmBackend::ApplyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize, uint64_t Value) const { unsigned NumBytes = 4; // FIXME: 2 for Thumb Value = adjustFixupValue(Fixup.getKind(), Value); if (!Value) return; // Doesn't change encoding. unsigned Offset = Fixup.getOffset(); assert(Offset % NumBytes == 0 && "Offset mod NumBytes is nonzero!"); // For each byte of the fragment that the fixup touches, mask in the bits from // the fixup value. The Value has been "split up" into the appropriate // bitfields above. for (unsigned i = 0; i != NumBytes; ++i) Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff); } // FIXME: This should be in a separate file. class DarwinARMAsmBackend : public ARMAsmBackend { public: DarwinARMAsmBackend(const Target &T) : ARMAsmBackend(T) { } void ApplyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize, uint64_t Value) const; MCObjectWriter *createObjectWriter(raw_ostream &OS) const { // FIXME: Subtarget info should be derived. Force v7 for now. return createMachObjectWriter(new ARMMachObjectWriter( /*Is64Bit=*/false, object::mach::CTM_ARM, object::mach::CSARM_V7), OS, /*IsLittleEndian=*/true); } virtual bool doesSectionRequireSymbols(const MCSection &Section) const { return false; } }; /// getFixupKindNumBytes - The number of bytes the fixup may change. static unsigned getFixupKindNumBytes(unsigned Kind) { switch (Kind) { default: llvm_unreachable("Unknown fixup kind!"); case FK_Data_1: case ARM::fixup_arm_thumb_bcc: case ARM::fixup_arm_thumb_cp: case ARM::fixup_thumb_adr_pcrel_10: return 1; case FK_Data_2: case ARM::fixup_arm_thumb_br: case ARM::fixup_arm_thumb_cb: return 2; case ARM::fixup_arm_ldst_pcrel_12: case ARM::fixup_arm_pcrel_10: case ARM::fixup_arm_adr_pcrel_12: case ARM::fixup_arm_branch: return 3; case FK_Data_4: case ARM::fixup_t2_ldst_pcrel_12: case ARM::fixup_t2_condbranch: case ARM::fixup_t2_uncondbranch: case ARM::fixup_t2_pcrel_10: case ARM::fixup_t2_adr_pcrel_12: case ARM::fixup_arm_thumb_bl: case ARM::fixup_arm_thumb_blx: return 4; } } void DarwinARMAsmBackend::ApplyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize, uint64_t Value) const { unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind()); Value = adjustFixupValue(Fixup.getKind(), Value); if (!Value) return; // Doesn't change encoding. unsigned Offset = Fixup.getOffset(); assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!"); // For each byte of the fragment that the fixup touches, mask in the // bits from the fixup value. for (unsigned i = 0; i != NumBytes; ++i) Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff); } } // end anonymous namespace TargetAsmBackend *llvm::createARMAsmBackend(const Target &T, const std::string &TT) { switch (Triple(TT).getOS()) { case Triple::Darwin: return new DarwinARMAsmBackend(T); case Triple::MinGW32: case Triple::Cygwin: case Triple::Win32: assert(0 && "Windows not supported on ARM"); default: return new ELFARMAsmBackend(T, Triple(TT).getOS()); } }