//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveInterval analysis pass which is used // by the Linear Scan Register allocator. This pass linearizes the // basic blocks of the function in DFS order and uses the // LiveVariables pass to conservatively compute live intervals for // each virtual and physical register. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/Value.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/ProcessImplicitDefs.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include #include using namespace llvm; // Hidden options for help debugging. static cl::opt DisableReMat("disable-rematerialization", cl::init(false), cl::Hidden); STATISTIC(numIntervals , "Number of original intervals"); char LiveIntervals::ID = 0; INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", "Live Interval Analysis", false, false) INITIALIZE_PASS_DEPENDENCY(LiveVariables) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(PHIElimination) INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass) INITIALIZE_PASS_DEPENDENCY(ProcessImplicitDefs) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_END(LiveIntervals, "liveintervals", "Live Interval Analysis", false, false) void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addPreservedID(MachineDominatorsID); if (!StrongPHIElim) { AU.addPreservedID(PHIEliminationID); AU.addRequiredID(PHIEliminationID); } AU.addRequiredID(TwoAddressInstructionPassID); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequiredTransitive(); MachineFunctionPass::getAnalysisUsage(AU); } void LiveIntervals::releaseMemory() { // Free the live intervals themselves. for (DenseMap::iterator I = r2iMap_.begin(), E = r2iMap_.end(); I != E; ++I) delete I->second; r2iMap_.clear(); RegMaskSlots.clear(); RegMaskBits.clear(); RegMaskBlocks.clear(); // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. VNInfoAllocator.Reset(); } /// runOnMachineFunction - Register allocate the whole function /// bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; mri_ = &mf_->getRegInfo(); tm_ = &fn.getTarget(); tri_ = tm_->getRegisterInfo(); tii_ = tm_->getInstrInfo(); aa_ = &getAnalysis(); lv_ = &getAnalysis(); indexes_ = &getAnalysis(); allocatableRegs_ = tri_->getAllocatableSet(fn); computeIntervals(); numIntervals += getNumIntervals(); DEBUG(dump()); return true; } /// print - Implement the dump method. void LiveIntervals::print(raw_ostream &OS, const Module* ) const { OS << "********** INTERVALS **********\n"; for (const_iterator I = begin(), E = end(); I != E; ++I) { I->second->print(OS, tri_); OS << "\n"; } printInstrs(OS); } void LiveIntervals::printInstrs(raw_ostream &OS) const { OS << "********** MACHINEINSTRS **********\n"; mf_->print(OS, indexes_); } void LiveIntervals::dumpInstrs() const { printInstrs(dbgs()); } static bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) { unsigned Reg = MI.getOperand(MOIdx).getReg(); for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; if (MO.getReg() == Reg && MO.isDef()) { assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() && MI.getOperand(MOIdx).getSubReg() && (MO.getSubReg() || MO.isImplicit())); return true; } } return false; } /// isPartialRedef - Return true if the specified def at the specific index is /// partially re-defining the specified live interval. A common case of this is /// a definition of the sub-register. bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO, LiveInterval &interval) { if (!MO.getSubReg() || MO.isEarlyClobber()) return false; SlotIndex RedefIndex = MIIdx.getRegSlot(); const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex.getRegSlot(true)); MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def); if (DefMI != 0) { return DefMI->findRegisterDefOperandIdx(interval.reg) != -1; } return false; } void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, MachineBasicBlock::iterator mi, SlotIndex MIIdx, MachineOperand& MO, unsigned MOIdx, LiveInterval &interval) { DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_)); // Virtual registers may be defined multiple times (due to phi // elimination and 2-addr elimination). Much of what we do only has to be // done once for the vreg. We use an empty interval to detect the first // time we see a vreg. LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg); if (interval.empty()) { // Get the Idx of the defining instructions. SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber()); // Make sure the first definition is not a partial redefinition. Add an // of the full register. // FIXME: LiveIntervals shouldn't modify the code like this. Whoever // created the machine instruction should annotate it with flags // as needed. Then we can simply assert here. The REG_SEQUENCE lowering // is the main suspect. if (MO.getSubReg()) { mi->addRegisterDefined(interval.reg); // Mark all defs of interval.reg on this instruction as reading . for (unsigned i = MOIdx, e = mi->getNumOperands(); i != e; ++i) { MachineOperand &MO2 = mi->getOperand(i); if (MO2.isReg() && MO2.getReg() == interval.reg && MO2.getSubReg()) MO2.setIsUndef(); } } VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator); assert(ValNo->id == 0 && "First value in interval is not 0?"); // Loop over all of the blocks that the vreg is defined in. There are // two cases we have to handle here. The most common case is a vreg // whose lifetime is contained within a basic block. In this case there // will be a single kill, in MBB, which comes after the definition. if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { // FIXME: what about dead vars? SlotIndex killIdx; if (vi.Kills[0] != mi) killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot(); else killIdx = defIndex.getDeadSlot(); // If the kill happens after the definition, we have an intra-block // live range. if (killIdx > defIndex) { assert(vi.AliveBlocks.empty() && "Shouldn't be alive across any blocks!"); LiveRange LR(defIndex, killIdx, ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR << "\n"); return; } } // The other case we handle is when a virtual register lives to the end // of the defining block, potentially live across some blocks, then is // live into some number of blocks, but gets killed. Start by adding a // range that goes from this definition to the end of the defining block. LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo); DEBUG(dbgs() << " +" << NewLR); interval.addRange(NewLR); bool PHIJoin = lv_->isPHIJoin(interval.reg); if (PHIJoin) { // A phi join register is killed at the end of the MBB and revived as a new // valno in the killing blocks. assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks"); DEBUG(dbgs() << " phi-join"); ValNo->setHasPHIKill(true); } else { // Iterate over all of the blocks that the variable is completely // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the // live interval. for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(), E = vi.AliveBlocks.end(); I != E; ++I) { MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I); LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR); } } // Finally, this virtual register is live from the start of any killing // block to the 'use' slot of the killing instruction. for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { MachineInstr *Kill = vi.Kills[i]; SlotIndex Start = getMBBStartIdx(Kill->getParent()); SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot(); // Create interval with one of a NEW value number. Note that this value // number isn't actually defined by an instruction, weird huh? :) if (PHIJoin) { assert(getInstructionFromIndex(Start) == 0 && "PHI def index points at actual instruction."); ValNo = interval.getNextValue(Start, VNInfoAllocator); ValNo->setIsPHIDef(true); } LiveRange LR(Start, killIdx, ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR); } } else { if (MultipleDefsBySameMI(*mi, MOIdx)) // Multiple defs of the same virtual register by the same instruction. // e.g. %reg1031:5, %reg1031:6 = VLD1q16 %reg1024, ... // This is likely due to elimination of REG_SEQUENCE instructions. Return // here since there is nothing to do. return; // If this is the second time we see a virtual register definition, it // must be due to phi elimination or two addr elimination. If this is // the result of two address elimination, then the vreg is one of the // def-and-use register operand. // It may also be partial redef like this: // 80 %reg1041:6 = VSHRNv4i16 %reg1034, 12, pred:14, pred:%reg0 // 120 %reg1041:5 = VSHRNv4i16 %reg1039, 12, pred:14, pred:%reg0 bool PartReDef = isPartialRedef(MIIdx, MO, interval); if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) { // If this is a two-address definition, then we have already processed // the live range. The only problem is that we didn't realize there // are actually two values in the live interval. Because of this we // need to take the LiveRegion that defines this register and split it // into two values. SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber()); const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex.getRegSlot(true)); VNInfo *OldValNo = OldLR->valno; SlotIndex DefIndex = OldValNo->def.getRegSlot(); // Delete the previous value, which should be short and continuous, // because the 2-addr copy must be in the same MBB as the redef. interval.removeRange(DefIndex, RedefIndex); // The new value number (#1) is defined by the instruction we claimed // defined value #0. VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator); // Value#0 is now defined by the 2-addr instruction. OldValNo->def = RedefIndex; // Add the new live interval which replaces the range for the input copy. LiveRange LR(DefIndex, RedefIndex, ValNo); DEBUG(dbgs() << " replace range with " << LR); interval.addRange(LR); // If this redefinition is dead, we need to add a dummy unit live // range covering the def slot. if (MO.isDead()) interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(), OldValNo)); DEBUG({ dbgs() << " RESULT: "; interval.print(dbgs(), tri_); }); } else if (lv_->isPHIJoin(interval.reg)) { // In the case of PHI elimination, each variable definition is only // live until the end of the block. We've already taken care of the // rest of the live range. SlotIndex defIndex = MIIdx.getRegSlot(); if (MO.isEarlyClobber()) defIndex = MIIdx.getRegSlot(true); VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator); SlotIndex killIndex = getMBBEndIdx(mbb); LiveRange LR(defIndex, killIndex, ValNo); interval.addRange(LR); ValNo->setHasPHIKill(true); DEBUG(dbgs() << " phi-join +" << LR); } else { llvm_unreachable("Multiply defined register"); } } DEBUG(dbgs() << '\n'); } void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator mi, SlotIndex MIIdx, MachineOperand& MO, LiveInterval &interval) { // A physical register cannot be live across basic block, so its // lifetime must end somewhere in its defining basic block. DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_)); SlotIndex baseIndex = MIIdx; SlotIndex start = baseIndex.getRegSlot(MO.isEarlyClobber()); SlotIndex end = start; // If it is not used after definition, it is considered dead at // the instruction defining it. Hence its interval is: // [defSlot(def), defSlot(def)+1) // For earlyclobbers, the defSlot was pushed back one; the extra // advance below compensates. if (MO.isDead()) { DEBUG(dbgs() << " dead"); end = start.getDeadSlot(); goto exit; } // If it is not dead on definition, it must be killed by a // subsequent instruction. Hence its interval is: // [defSlot(def), useSlot(kill)+1) baseIndex = baseIndex.getNextIndex(); while (++mi != MBB->end()) { if (mi->isDebugValue()) continue; if (getInstructionFromIndex(baseIndex) == 0) baseIndex = indexes_->getNextNonNullIndex(baseIndex); if (mi->killsRegister(interval.reg, tri_)) { DEBUG(dbgs() << " killed"); end = baseIndex.getRegSlot(); goto exit; } else { int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,tri_); if (DefIdx != -1) { if (mi->isRegTiedToUseOperand(DefIdx)) { // Two-address instruction. end = baseIndex.getRegSlot(mi->getOperand(DefIdx).isEarlyClobber()); } else { // Another instruction redefines the register before it is ever read. // Then the register is essentially dead at the instruction that // defines it. Hence its interval is: // [defSlot(def), defSlot(def)+1) DEBUG(dbgs() << " dead"); end = start.getDeadSlot(); } goto exit; } } baseIndex = baseIndex.getNextIndex(); } // The only case we should have a dead physreg here without a killing or // instruction where we know it's dead is if it is live-in to the function // and never used. Another possible case is the implicit use of the // physical register has been deleted by two-address pass. end = start.getDeadSlot(); exit: assert(start < end && "did not find end of interval?"); // Already exists? Extend old live interval. VNInfo *ValNo = interval.getVNInfoAt(start); bool Extend = ValNo != 0; if (!Extend) ValNo = interval.getNextValue(start, VNInfoAllocator); LiveRange LR(start, end, ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR << '\n'); } void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI, SlotIndex MIIdx, MachineOperand& MO, unsigned MOIdx) { if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx, getOrCreateInterval(MO.getReg())); else handlePhysicalRegisterDef(MBB, MI, MIIdx, MO, getOrCreateInterval(MO.getReg())); } void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB, SlotIndex MIIdx, LiveInterval &interval) { DEBUG(dbgs() << "\t\tlivein register: " << PrintReg(interval.reg, tri_)); // Look for kills, if it reaches a def before it's killed, then it shouldn't // be considered a livein. MachineBasicBlock::iterator mi = MBB->begin(); MachineBasicBlock::iterator E = MBB->end(); // Skip over DBG_VALUE at the start of the MBB. if (mi != E && mi->isDebugValue()) { while (++mi != E && mi->isDebugValue()) ; if (mi == E) // MBB is empty except for DBG_VALUE's. return; } SlotIndex baseIndex = MIIdx; SlotIndex start = baseIndex; if (getInstructionFromIndex(baseIndex) == 0) baseIndex = indexes_->getNextNonNullIndex(baseIndex); SlotIndex end = baseIndex; bool SeenDefUse = false; while (mi != E) { if (mi->killsRegister(interval.reg, tri_)) { DEBUG(dbgs() << " killed"); end = baseIndex.getRegSlot(); SeenDefUse = true; break; } else if (mi->definesRegister(interval.reg, tri_)) { // Another instruction redefines the register before it is ever read. // Then the register is essentially dead at the instruction that defines // it. Hence its interval is: // [defSlot(def), defSlot(def)+1) DEBUG(dbgs() << " dead"); end = start.getDeadSlot(); SeenDefUse = true; break; } while (++mi != E && mi->isDebugValue()) // Skip over DBG_VALUE. ; if (mi != E) baseIndex = indexes_->getNextNonNullIndex(baseIndex); } // Live-in register might not be used at all. if (!SeenDefUse) { DEBUG(dbgs() << " live through"); end = getMBBEndIdx(MBB); } SlotIndex defIdx = getMBBStartIdx(MBB); assert(getInstructionFromIndex(defIdx) == 0 && "PHI def index points at actual instruction."); VNInfo *vni = interval.getNextValue(defIdx, VNInfoAllocator); vni->setIsPHIDef(true); LiveRange LR(start, end, vni); interval.addRange(LR); DEBUG(dbgs() << " +" << LR << '\n'); } /// computeIntervals - computes the live intervals for virtual /// registers. for some ordering of the machine instructions [1,N] a /// live interval is an interval [i, j) where 1 <= i <= j < N for /// which a variable is live void LiveIntervals::computeIntervals() { DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n" << "********** Function: " << ((Value*)mf_->getFunction())->getName() << '\n'); RegMaskBlocks.resize(mf_->getNumBlockIDs()); SmallVector UndefUses; for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end(); MBBI != E; ++MBBI) { MachineBasicBlock *MBB = MBBI; RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size(); if (MBB->empty()) continue; // Track the index of the current machine instr. SlotIndex MIIndex = getMBBStartIdx(MBB); DEBUG(dbgs() << "BB#" << MBB->getNumber() << ":\t\t# derived from " << MBB->getName() << "\n"); // Create intervals for live-ins to this BB first. for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(), LE = MBB->livein_end(); LI != LE; ++LI) { handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI)); } // Skip over empty initial indices. if (getInstructionFromIndex(MIIndex) == 0) MIIndex = indexes_->getNextNonNullIndex(MIIndex); for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end(); MI != miEnd; ++MI) { DEBUG(dbgs() << MIIndex << "\t" << *MI); if (MI->isDebugValue()) continue; assert(indexes_->getInstructionFromIndex(MIIndex) == MI && "Lost SlotIndex synchronization"); // Handle defs. for (int i = MI->getNumOperands() - 1; i >= 0; --i) { MachineOperand &MO = MI->getOperand(i); // Collect register masks. if (MO.isRegMask()) { RegMaskSlots.push_back(MIIndex.getRegSlot()); RegMaskBits.push_back(MO.getRegMask()); continue; } if (!MO.isReg() || !MO.getReg()) continue; // handle register defs - build intervals if (MO.isDef()) handleRegisterDef(MBB, MI, MIIndex, MO, i); else if (MO.isUndef()) UndefUses.push_back(MO.getReg()); } // Move to the next instr slot. MIIndex = indexes_->getNextNonNullIndex(MIIndex); } // Compute the number of register mask instructions in this block. std::pair &RMB = RegMaskBlocks[MBB->getNumber()]; RMB.second = RegMaskSlots.size() - RMB.first;; } // Create empty intervals for registers defined by implicit_def's (except // for those implicit_def that define values which are liveout of their // blocks. for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) { unsigned UndefReg = UndefUses[i]; (void)getOrCreateInterval(UndefReg); } } LiveInterval* LiveIntervals::createInterval(unsigned reg) { float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F; return new LiveInterval(reg, Weight); } /// dupInterval - Duplicate a live interval. The caller is responsible for /// managing the allocated memory. LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) { LiveInterval *NewLI = createInterval(li->reg); NewLI->Copy(*li, mri_, getVNInfoAllocator()); return NewLI; } /// shrinkToUses - After removing some uses of a register, shrink its live /// range to just the remaining uses. This method does not compute reaching /// defs for new uses, and it doesn't remove dead defs. bool LiveIntervals::shrinkToUses(LiveInterval *li, SmallVectorImpl *dead) { DEBUG(dbgs() << "Shrink: " << *li << '\n'); assert(TargetRegisterInfo::isVirtualRegister(li->reg) && "Can only shrink virtual registers"); // Find all the values used, including PHI kills. SmallVector, 16> WorkList; // Blocks that have already been added to WorkList as live-out. SmallPtrSet LiveOut; // Visit all instructions reading li->reg. for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li->reg); MachineInstr *UseMI = I.skipInstruction();) { if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg)) continue; SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); // Note: This intentionally picks up the wrong VNI in case of an EC redef. // See below. VNInfo *VNI = li->getVNInfoBefore(Idx); if (!VNI) { // This shouldn't happen: readsVirtualRegister returns true, but there is // no live value. It is likely caused by a target getting flags // wrong. DEBUG(dbgs() << Idx << '\t' << *UseMI << "Warning: Instr claims to read non-existent value in " << *li << '\n'); continue; } // Special case: An early-clobber tied operand reads and writes the // register one slot early. The getVNInfoBefore call above would have // picked up the value defined by UseMI. Adjust the kill slot and value. if (SlotIndex::isSameInstr(VNI->def, Idx)) { Idx = VNI->def; VNI = li->getVNInfoBefore(Idx); assert(VNI && "Early-clobber tied value not available"); } WorkList.push_back(std::make_pair(Idx, VNI)); } // Create a new live interval with only minimal live segments per def. LiveInterval NewLI(li->reg, 0); for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused()) continue; NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI)); } // Keep track of the PHIs that are in use. SmallPtrSet UsedPHIs; // Extend intervals to reach all uses in WorkList. while (!WorkList.empty()) { SlotIndex Idx = WorkList.back().first; VNInfo *VNI = WorkList.back().second; WorkList.pop_back(); const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot()); SlotIndex BlockStart = getMBBStartIdx(MBB); // Extend the live range for VNI to be live at Idx. if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) { (void)ExtVNI; assert(ExtVNI == VNI && "Unexpected existing value number"); // Is this a PHIDef we haven't seen before? if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI)) continue; // The PHI is live, make sure the predecessors are live-out. for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { if (!LiveOut.insert(*PI)) continue; SlotIndex Stop = getMBBEndIdx(*PI); // A predecessor is not required to have a live-out value for a PHI. if (VNInfo *PVNI = li->getVNInfoBefore(Stop)) WorkList.push_back(std::make_pair(Stop, PVNI)); } continue; } // VNI is live-in to MBB. DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); NewLI.addRange(LiveRange(BlockStart, Idx, VNI)); // Make sure VNI is live-out from the predecessors. for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { if (!LiveOut.insert(*PI)) continue; SlotIndex Stop = getMBBEndIdx(*PI); assert(li->getVNInfoBefore(Stop) == VNI && "Wrong value out of predecessor"); WorkList.push_back(std::make_pair(Stop, VNI)); } } // Handle dead values. bool CanSeparate = false; for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused()) continue; LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def); assert(LII != NewLI.end() && "Missing live range for PHI"); if (LII->end != VNI->def.getDeadSlot()) continue; if (VNI->isPHIDef()) { // This is a dead PHI. Remove it. VNI->setIsUnused(true); NewLI.removeRange(*LII); DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n"); CanSeparate = true; } else { // This is a dead def. Make sure the instruction knows. MachineInstr *MI = getInstructionFromIndex(VNI->def); assert(MI && "No instruction defining live value"); MI->addRegisterDead(li->reg, tri_); if (dead && MI->allDefsAreDead()) { DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI); dead->push_back(MI); } } } // Move the trimmed ranges back. li->ranges.swap(NewLI.ranges); DEBUG(dbgs() << "Shrunk: " << *li << '\n'); return CanSeparate; } //===----------------------------------------------------------------------===// // Register allocator hooks. // void LiveIntervals::addKillFlags() { for (iterator I = begin(), E = end(); I != E; ++I) { unsigned Reg = I->first; if (TargetRegisterInfo::isPhysicalRegister(Reg)) continue; if (mri_->reg_nodbg_empty(Reg)) continue; LiveInterval *LI = I->second; // Every instruction that kills Reg corresponds to a live range end point. for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE; ++RI) { // A block index indicates an MBB edge. if (RI->end.isBlock()) continue; MachineInstr *MI = getInstructionFromIndex(RI->end); if (!MI) continue; MI->addRegisterKilled(Reg, NULL); } } } #ifndef NDEBUG static bool intervalRangesSane(const LiveInterval& li) { if (li.empty()) { return true; } SlotIndex lastEnd = li.begin()->start; for (LiveInterval::const_iterator lrItr = li.begin(), lrEnd = li.end(); lrItr != lrEnd; ++lrItr) { const LiveRange& lr = *lrItr; if (lastEnd > lr.start || lr.start >= lr.end) return false; lastEnd = lr.end; } return true; } #endif template static void handleMoveDefs(LiveIntervals& lis, SlotIndex origIdx, SlotIndex miIdx, const DefSetT& defs) { for (typename DefSetT::const_iterator defItr = defs.begin(), defEnd = defs.end(); defItr != defEnd; ++defItr) { unsigned def = *defItr; LiveInterval& li = lis.getInterval(def); LiveRange* lr = li.getLiveRangeContaining(origIdx.getRegSlot()); assert(lr != 0 && "No range for def?"); lr->start = miIdx.getRegSlot(); lr->valno->def = miIdx.getRegSlot(); assert(intervalRangesSane(li) && "Broke live interval moving def."); } } template static void handleMoveDeadDefs(LiveIntervals& lis, SlotIndex origIdx, SlotIndex miIdx, const DeadDefSetT& deadDefs) { for (typename DeadDefSetT::const_iterator deadDefItr = deadDefs.begin(), deadDefEnd = deadDefs.end(); deadDefItr != deadDefEnd; ++deadDefItr) { unsigned deadDef = *deadDefItr; LiveInterval& li = lis.getInterval(deadDef); LiveRange* lr = li.getLiveRangeContaining(origIdx.getRegSlot()); assert(lr != 0 && "No range for dead def?"); assert(lr->start == origIdx.getRegSlot() && "Bad dead range start?"); assert(lr->end == origIdx.getDeadSlot() && "Bad dead range end?"); assert(lr->valno->def == origIdx.getRegSlot() && "Bad dead valno def."); LiveRange t(*lr); t.start = miIdx.getRegSlot(); t.valno->def = miIdx.getRegSlot(); t.end = miIdx.getDeadSlot(); li.removeRange(*lr); li.addRange(t); assert(intervalRangesSane(li) && "Broke live interval moving dead def."); } } template static void handleMoveECs(LiveIntervals& lis, SlotIndex origIdx, SlotIndex miIdx, const ECSetT& ecs) { for (typename ECSetT::const_iterator ecItr = ecs.begin(), ecEnd = ecs.end(); ecItr != ecEnd; ++ecItr) { unsigned ec = *ecItr; LiveInterval& li = lis.getInterval(ec); LiveRange* lr = li.getLiveRangeContaining(origIdx.getRegSlot(true)); assert(lr != 0 && "No range for early clobber?"); assert(lr->start == origIdx.getRegSlot(true) && "Bad EC range start?"); assert(lr->end == origIdx.getRegSlot() && "Bad EC range end."); assert(lr->valno->def == origIdx.getRegSlot(true) && "Bad EC valno def."); LiveRange t(*lr); t.start = miIdx.getRegSlot(true); t.valno->def = miIdx.getRegSlot(true); t.end = miIdx.getRegSlot(); li.removeRange(*lr); li.addRange(t); assert(intervalRangesSane(li) && "Broke live interval moving EC."); } } static void moveKillFlags(unsigned reg, SlotIndex oldIdx, SlotIndex newIdx, LiveIntervals& lis, const TargetRegisterInfo& tri) { MachineInstr* oldKillMI = lis.getInstructionFromIndex(oldIdx); MachineInstr* newKillMI = lis.getInstructionFromIndex(newIdx); assert(oldKillMI->killsRegister(reg) && "Old 'kill' instr isn't a kill."); assert(!newKillMI->killsRegister(reg) && "New kill instr is already a kill."); oldKillMI->clearRegisterKills(reg, &tri); newKillMI->addRegisterKilled(reg, &tri); } template static void handleMoveUses(const MachineBasicBlock *mbb, const MachineRegisterInfo& mri, const TargetRegisterInfo& tri, const BitVector& reservedRegs, LiveIntervals &lis, SlotIndex origIdx, SlotIndex miIdx, const UseSetT &uses) { bool movingUp = miIdx < origIdx; for (typename UseSetT::const_iterator usesItr = uses.begin(), usesEnd = uses.end(); usesItr != usesEnd; ++usesItr) { unsigned use = *usesItr; if (!lis.hasInterval(use)) continue; if (TargetRegisterInfo::isPhysicalRegister(use) && reservedRegs.test(use)) continue; LiveInterval& li = lis.getInterval(use); LiveRange* lr = li.getLiveRangeBefore(origIdx.getRegSlot()); assert(lr != 0 && "No range for use?"); bool liveThrough = lr->end > origIdx.getRegSlot(); if (movingUp) { // If moving up and liveThrough - nothing to do. // If not live through we need to extend the range to the last use // between the old location and the new one. if (!liveThrough) { SlotIndex lastUseInRange = miIdx.getRegSlot(); for (MachineRegisterInfo::use_iterator useI = mri.use_begin(use), useE = mri.use_end(); useI != useE; ++useI) { const MachineInstr* mopI = &*useI; const MachineOperand& mop = useI.getOperand(); SlotIndex instSlot = lis.getSlotIndexes()->getInstructionIndex(mopI); SlotIndex opSlot = instSlot.getRegSlot(mop.isEarlyClobber()); if (opSlot > lastUseInRange && opSlot < origIdx) lastUseInRange = opSlot; } // If we found a new instr endpoint update the kill flags. if (lastUseInRange != miIdx.getRegSlot()) moveKillFlags(use, miIdx, lastUseInRange, lis, tri); // Fix up the range end. lr->end = lastUseInRange; } } else { // Moving down is easy - the existing live range end tells us where // the last kill is. if (!liveThrough) { // Easy fix - just update the range endpoint. lr->end = miIdx.getRegSlot(); } else { bool liveOut = lr->end >= lis.getSlotIndexes()->getMBBEndIdx(mbb); if (!liveOut && miIdx.getRegSlot() > lr->end) { moveKillFlags(use, lr->end, miIdx, lis, tri); lr->end = miIdx.getRegSlot(); } } } assert(intervalRangesSane(li) && "Broke live interval moving use."); } } void LiveIntervals::moveInstr(MachineBasicBlock::iterator insertPt, MachineInstr *mi) { MachineBasicBlock* mbb = mi->getParent(); assert((insertPt == mbb->end() || insertPt->getParent() == mbb) && "Cannot handle moves across basic block boundaries."); assert(&*insertPt != mi && "No-op move requested?"); assert(!mi->isBundled() && "Can't handle bundled instructions yet."); // Grab the original instruction index. SlotIndex origIdx = indexes_->getInstructionIndex(mi); // Move the machine instr and obtain its new index. indexes_->removeMachineInstrFromMaps(mi); mbb->splice(insertPt, mbb, mi); SlotIndex miIdx = indexes_->insertMachineInstrInMaps(mi); // Pick the direction. bool movingUp = miIdx < origIdx; // Collect the operands. DenseSet uses, defs, deadDefs, ecs; for (MachineInstr::mop_iterator mopItr = mi->operands_begin(), mopEnd = mi->operands_end(); mopItr != mopEnd; ++mopItr) { const MachineOperand& mop = *mopItr; if (!mop.isReg() || mop.getReg() == 0) continue; unsigned reg = mop.getReg(); if (mop.readsReg() && !ecs.count(reg)) { uses.insert(reg); } if (mop.isDef()) { if (mop.isDead()) { assert(!defs.count(reg) && "Can't mix defs with dead-defs."); deadDefs.insert(reg); } else if (mop.isEarlyClobber()) { uses.erase(reg); ecs.insert(reg); } else { assert(!deadDefs.count(reg) && "Can't mix defs with dead-defs."); defs.insert(reg); } } } BitVector reservedRegs(tri_->getReservedRegs(*mbb->getParent())); if (movingUp) { handleMoveUses(mbb, *mri_, *tri_, reservedRegs, *this, origIdx, miIdx, uses); handleMoveECs(*this, origIdx, miIdx, ecs); handleMoveDeadDefs(*this, origIdx, miIdx, deadDefs); handleMoveDefs(*this, origIdx, miIdx, defs); } else { handleMoveDefs(*this, origIdx, miIdx, defs); handleMoveDeadDefs(*this, origIdx, miIdx, deadDefs); handleMoveECs(*this, origIdx, miIdx, ecs); handleMoveUses(mbb, *mri_, *tri_, reservedRegs, *this, origIdx, miIdx, uses); } } /// getReMatImplicitUse - If the remat definition MI has one (for now, we only /// allow one) virtual register operand, then its uses are implicitly using /// the register. Returns the virtual register. unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li, MachineInstr *MI) const { unsigned RegOp = 0; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; unsigned Reg = MO.getReg(); if (Reg == 0 || Reg == li.reg) continue; if (TargetRegisterInfo::isPhysicalRegister(Reg) && !allocatableRegs_[Reg]) continue; RegOp = MO.getReg(); break; // Found vreg operand - leave the loop. } return RegOp; } /// isValNoAvailableAt - Return true if the val# of the specified interval /// which reaches the given instruction also reaches the specified use index. bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI, SlotIndex UseIdx) const { VNInfo *UValNo = li.getVNInfoAt(UseIdx); return UValNo && UValNo == li.getVNInfoAt(getInstructionIndex(MI)); } /// isReMaterializable - Returns true if the definition MI of the specified /// val# of the specified interval is re-materializable. bool LiveIntervals::isReMaterializable(const LiveInterval &li, const VNInfo *ValNo, MachineInstr *MI, const SmallVectorImpl *SpillIs, bool &isLoad) { if (DisableReMat) return false; if (!tii_->isTriviallyReMaterializable(MI, aa_)) return false; // Target-specific code can mark an instruction as being rematerializable // if it has one virtual reg use, though it had better be something like // a PIC base register which is likely to be live everywhere. unsigned ImpUse = getReMatImplicitUse(li, MI); if (ImpUse) { const LiveInterval &ImpLi = getInterval(ImpUse); for (MachineRegisterInfo::use_nodbg_iterator ri = mri_->use_nodbg_begin(li.reg), re = mri_->use_nodbg_end(); ri != re; ++ri) { MachineInstr *UseMI = &*ri; SlotIndex UseIdx = getInstructionIndex(UseMI); if (li.getVNInfoAt(UseIdx) != ValNo) continue; if (!isValNoAvailableAt(ImpLi, MI, UseIdx)) return false; } // If a register operand of the re-materialized instruction is going to // be spilled next, then it's not legal to re-materialize this instruction. if (SpillIs) for (unsigned i = 0, e = SpillIs->size(); i != e; ++i) if (ImpUse == (*SpillIs)[i]->reg) return false; } return true; } /// isReMaterializable - Returns true if every definition of MI of every /// val# of the specified interval is re-materializable. bool LiveIntervals::isReMaterializable(const LiveInterval &li, const SmallVectorImpl *SpillIs, bool &isLoad) { isLoad = false; for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end(); i != e; ++i) { const VNInfo *VNI = *i; if (VNI->isUnused()) continue; // Dead val#. // Is the def for the val# rematerializable? MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def); if (!ReMatDefMI) return false; bool DefIsLoad = false; if (!ReMatDefMI || !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad)) return false; isLoad |= DefIsLoad; } return true; } MachineBasicBlock* LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { // A local live range must be fully contained inside the block, meaning it is // defined and killed at instructions, not at block boundaries. It is not // live in or or out of any block. // // It is technically possible to have a PHI-defined live range identical to a // single block, but we are going to return false in that case. SlotIndex Start = LI.beginIndex(); if (Start.isBlock()) return NULL; SlotIndex Stop = LI.endIndex(); if (Stop.isBlock()) return NULL; // getMBBFromIndex doesn't need to search the MBB table when both indexes // belong to proper instructions. MachineBasicBlock *MBB1 = indexes_->getMBBFromIndex(Start); MachineBasicBlock *MBB2 = indexes_->getMBBFromIndex(Stop); return MBB1 == MBB2 ? MBB1 : NULL; } float LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) { // Limit the loop depth ridiculousness. if (loopDepth > 200) loopDepth = 200; // The loop depth is used to roughly estimate the number of times the // instruction is executed. Something like 10^d is simple, but will quickly // overflow a float. This expression behaves like 10^d for small d, but is // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of // headroom before overflow. // By the way, powf() might be unavailable here. For consistency, // We may take pow(double,double). float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth); return (isDef + isUse) * lc; } LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg, MachineInstr* startInst) { LiveInterval& Interval = getOrCreateInterval(reg); VNInfo* VN = Interval.getNextValue( SlotIndex(getInstructionIndex(startInst).getRegSlot()), getVNInfoAllocator()); VN->setHasPHIKill(true); LiveRange LR( SlotIndex(getInstructionIndex(startInst).getRegSlot()), getMBBEndIdx(startInst->getParent()), VN); Interval.addRange(LR); return LR; } //===----------------------------------------------------------------------===// // Register mask functions //===----------------------------------------------------------------------===// bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI, BitVector &UsableRegs) { if (LI.empty()) return false; LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end(); // Use a smaller arrays for local live ranges. ArrayRef Slots; ArrayRef Bits; if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { Slots = getRegMaskSlotsInBlock(MBB->getNumber()); Bits = getRegMaskBitsInBlock(MBB->getNumber()); } else { Slots = getRegMaskSlots(); Bits = getRegMaskBits(); } // We are going to enumerate all the register mask slots contained in LI. // Start with a binary search of RegMaskSlots to find a starting point. ArrayRef::iterator SlotI = std::lower_bound(Slots.begin(), Slots.end(), LiveI->start); ArrayRef::iterator SlotE = Slots.end(); // No slots in range, LI begins after the last call. if (SlotI == SlotE) return false; bool Found = false; for (;;) { assert(*SlotI >= LiveI->start); // Loop over all slots overlapping this segment. while (*SlotI < LiveI->end) { // *SlotI overlaps LI. Collect mask bits. if (!Found) { // This is the first overlap. Initialize UsableRegs to all ones. UsableRegs.clear(); UsableRegs.resize(tri_->getNumRegs(), true); Found = true; } // Remove usable registers clobbered by this mask. UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]); if (++SlotI == SlotE) return Found; } // *SlotI is beyond the current LI segment. LiveI = LI.advanceTo(LiveI, *SlotI); if (LiveI == LiveE) return Found; // Advance SlotI until it overlaps. while (*SlotI < LiveI->start) if (++SlotI == SlotE) return Found; } }