//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the SelectionDAG class. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Constants.h" #include "llvm/GlobalValue.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/StringExtras.h" #include #include #include #include using namespace llvm; static bool isCommutativeBinOp(unsigned Opcode) { switch (Opcode) { case ISD::ADD: case ISD::MUL: case ISD::MULHU: case ISD::MULHS: case ISD::FADD: case ISD::FMUL: case ISD::AND: case ISD::OR: case ISD::XOR: return true; default: return false; // FIXME: Need commutative info for user ops! } } // isInvertibleForFree - Return true if there is no cost to emitting the logical // inverse of this node. static bool isInvertibleForFree(SDOperand N) { if (isa(N.Val)) return true; if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse()) return true; return false; } //===----------------------------------------------------------------------===// // ConstantFPSDNode Class //===----------------------------------------------------------------------===// /// isExactlyValue - We don't rely on operator== working on double values, as /// it returns true for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. bool ConstantFPSDNode::isExactlyValue(double V) const { return DoubleToBits(V) == DoubleToBits(Value); } //===----------------------------------------------------------------------===// // ISD Class //===----------------------------------------------------------------------===// /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) /// when given the operation for (X op Y). ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { // To perform this operation, we just need to swap the L and G bits of the // operation. unsigned OldL = (Operation >> 2) & 1; unsigned OldG = (Operation >> 1) & 1; return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits (OldL << 1) | // New G bit (OldG << 2)); // New L bit. } /// getSetCCInverse - Return the operation corresponding to !(X op Y), where /// 'op' is a valid SetCC operation. ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { unsigned Operation = Op; if (isInteger) Operation ^= 7; // Flip L, G, E bits, but not U. else Operation ^= 15; // Flip all of the condition bits. if (Operation > ISD::SETTRUE2) Operation &= ~8; // Don't let N and U bits get set. return ISD::CondCode(Operation); } /// isSignedOp - For an integer comparison, return 1 if the comparison is a /// signed operation and 2 if the result is an unsigned comparison. Return zero /// if the operation does not depend on the sign of the input (setne and seteq). static int isSignedOp(ISD::CondCode Opcode) { switch (Opcode) { default: assert(0 && "Illegal integer setcc operation!"); case ISD::SETEQ: case ISD::SETNE: return 0; case ISD::SETLT: case ISD::SETLE: case ISD::SETGT: case ISD::SETGE: return 1; case ISD::SETULT: case ISD::SETULE: case ISD::SETUGT: case ISD::SETUGE: return 2; } } /// getSetCCOrOperation - Return the result of a logical OR between different /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function /// returns SETCC_INVALID if it is not possible to represent the resultant /// comparison. ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, bool isInteger) { if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) // Cannot fold a signed integer setcc with an unsigned integer setcc. return ISD::SETCC_INVALID; unsigned Op = Op1 | Op2; // Combine all of the condition bits. // If the N and U bits get set then the resultant comparison DOES suddenly // care about orderedness, and is true when ordered. if (Op > ISD::SETTRUE2) Op &= ~16; // Clear the N bit. return ISD::CondCode(Op); } /// getSetCCAndOperation - Return the result of a logical AND between different /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This /// function returns zero if it is not possible to represent the resultant /// comparison. ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, bool isInteger) { if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) // Cannot fold a signed setcc with an unsigned setcc. return ISD::SETCC_INVALID; // Combine all of the condition bits. return ISD::CondCode(Op1 & Op2); } const TargetMachine &SelectionDAG::getTarget() const { return TLI.getTargetMachine(); } //===----------------------------------------------------------------------===// // SelectionDAG Class //===----------------------------------------------------------------------===// /// RemoveDeadNodes - This method deletes all unreachable nodes in the /// SelectionDAG, including nodes (like loads) that have uses of their token /// chain but no other uses and no side effect. If a node is passed in as an /// argument, it is used as the seed for node deletion. void SelectionDAG::RemoveDeadNodes(SDNode *N) { // Create a dummy node (which is not added to allnodes), that adds a reference // to the root node, preventing it from being deleted. HandleSDNode Dummy(getRoot()); bool MadeChange = false; // If we have a hint to start from, use it. if (N && N->use_empty()) { DestroyDeadNode(N); MadeChange = true; } for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I) if (I->use_empty() && I->getOpcode() != 65535) { // Node is dead, recursively delete newly dead uses. DestroyDeadNode(I); MadeChange = true; } // Walk the nodes list, removing the nodes we've marked as dead. if (MadeChange) { for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) { SDNode *N = I++; if (N->use_empty()) AllNodes.erase(N); } } // If the root changed (e.g. it was a dead load, update the root). setRoot(Dummy.getValue()); } /// DestroyDeadNode - We know that N is dead. Nuke it from the CSE maps for the /// graph. If it is the last user of any of its operands, recursively process /// them the same way. /// void SelectionDAG::DestroyDeadNode(SDNode *N) { // Okay, we really are going to delete this node. First take this out of the // appropriate CSE map. RemoveNodeFromCSEMaps(N); // Next, brutally remove the operand list. This is safe to do, as there are // no cycles in the graph. for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { SDNode *O = I->Val; O->removeUser(N); // Now that we removed this operand, see if there are no uses of it left. if (O->use_empty()) DestroyDeadNode(O); } delete[] N->OperandList; N->OperandList = 0; N->NumOperands = 0; // Mark the node as dead. N->MorphNodeTo(65535); } void SelectionDAG::DeleteNode(SDNode *N) { assert(N->use_empty() && "Cannot delete a node that is not dead!"); // First take this out of the appropriate CSE map. RemoveNodeFromCSEMaps(N); // Finally, remove uses due to operands of this node, remove from the // AllNodes list, and delete the node. DeleteNodeNotInCSEMaps(N); } void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { // Remove it from the AllNodes list. AllNodes.remove(N); // Drop all of the operands and decrement used nodes use counts. for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) I->Val->removeUser(N); delete[] N->OperandList; N->OperandList = 0; N->NumOperands = 0; delete N; } /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that /// correspond to it. This is useful when we're about to delete or repurpose /// the node. We don't want future request for structurally identical nodes /// to return N anymore. void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { bool Erased = false; switch (N->getOpcode()) { case ISD::HANDLENODE: return; // noop. case ISD::Constant: Erased = Constants.erase(std::make_pair(cast(N)->getValue(), N->getValueType(0))); break; case ISD::TargetConstant: Erased = TargetConstants.erase(std::make_pair( cast(N)->getValue(), N->getValueType(0))); break; case ISD::ConstantFP: { uint64_t V = DoubleToBits(cast(N)->getValue()); Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0))); break; } case ISD::TargetConstantFP: { uint64_t V = DoubleToBits(cast(N)->getValue()); Erased = TargetConstantFPs.erase(std::make_pair(V, N->getValueType(0))); break; } case ISD::STRING: Erased = StringNodes.erase(cast(N)->getValue()); break; case ISD::CONDCODE: assert(CondCodeNodes[cast(N)->get()] && "Cond code doesn't exist!"); Erased = CondCodeNodes[cast(N)->get()] != 0; CondCodeNodes[cast(N)->get()] = 0; break; case ISD::GlobalAddress: { GlobalAddressSDNode *GN = cast(N); Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(), GN->getOffset())); break; } case ISD::TargetGlobalAddress: { GlobalAddressSDNode *GN = cast(N); Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(), GN->getOffset())); break; } case ISD::FrameIndex: Erased = FrameIndices.erase(cast(N)->getIndex()); break; case ISD::TargetFrameIndex: Erased = TargetFrameIndices.erase(cast(N)->getIndex()); break; case ISD::ConstantPool: Erased = ConstantPoolIndices. erase(std::make_pair(cast(N)->get(), std::make_pair(cast(N)->getOffset(), cast(N)->getAlignment()))); break; case ISD::TargetConstantPool: Erased = TargetConstantPoolIndices. erase(std::make_pair(cast(N)->get(), std::make_pair(cast(N)->getOffset(), cast(N)->getAlignment()))); break; case ISD::BasicBlock: Erased = BBNodes.erase(cast(N)->getBasicBlock()); break; case ISD::ExternalSymbol: Erased = ExternalSymbols.erase(cast(N)->getSymbol()); break; case ISD::TargetExternalSymbol: Erased = TargetExternalSymbols.erase(cast(N)->getSymbol()); break; case ISD::VALUETYPE: Erased = ValueTypeNodes[cast(N)->getVT()] != 0; ValueTypeNodes[cast(N)->getVT()] = 0; break; case ISD::Register: Erased = RegNodes.erase(std::make_pair(cast(N)->getReg(), N->getValueType(0))); break; case ISD::SRCVALUE: { SrcValueSDNode *SVN = cast(N); Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset())); break; } case ISD::LOAD: Erased = Loads.erase(std::make_pair(N->getOperand(1), std::make_pair(N->getOperand(0), N->getValueType(0)))); break; default: if (N->getNumValues() == 1) { if (N->getNumOperands() == 0) { Erased = NullaryOps.erase(std::make_pair(N->getOpcode(), N->getValueType(0))); } else if (N->getNumOperands() == 1) { Erased = UnaryOps.erase(std::make_pair(N->getOpcode(), std::make_pair(N->getOperand(0), N->getValueType(0)))); } else if (N->getNumOperands() == 2) { Erased = BinaryOps.erase(std::make_pair(N->getOpcode(), std::make_pair(N->getOperand(0), N->getOperand(1)))); } else { std::vector Ops(N->op_begin(), N->op_end()); Erased = OneResultNodes.erase(std::make_pair(N->getOpcode(), std::make_pair(N->getValueType(0), Ops))); } } else { // Remove the node from the ArbitraryNodes map. std::vector RV(N->value_begin(), N->value_end()); std::vector Ops(N->op_begin(), N->op_end()); Erased = ArbitraryNodes.erase(std::make_pair(N->getOpcode(), std::make_pair(RV, Ops))); } break; } #ifndef NDEBUG // Verify that the node was actually in one of the CSE maps, unless it has a // flag result (which cannot be CSE'd) or is one of the special cases that are // not subject to CSE. if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag && !N->isTargetOpcode()) { N->dump(); assert(0 && "Node is not in map!"); } #endif } /// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It /// has been taken out and modified in some way. If the specified node already /// exists in the CSE maps, do not modify the maps, but return the existing node /// instead. If it doesn't exist, add it and return null. /// SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) { assert(N->getNumOperands() && "This is a leaf node!"); if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) return 0; // Never add these nodes. // Check that remaining values produced are not flags. for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) if (N->getValueType(i) == MVT::Flag) return 0; // Never CSE anything that produces a flag. if (N->getNumValues() == 1) { if (N->getNumOperands() == 1) { SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(), std::make_pair(N->getOperand(0), N->getValueType(0)))]; if (U) return U; U = N; } else if (N->getNumOperands() == 2) { SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(), std::make_pair(N->getOperand(0), N->getOperand(1)))]; if (B) return B; B = N; } else { std::vector Ops(N->op_begin(), N->op_end()); SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(), std::make_pair(N->getValueType(0), Ops))]; if (ORN) return ORN; ORN = N; } } else { if (N->getOpcode() == ISD::LOAD) { SDNode *&L = Loads[std::make_pair(N->getOperand(1), std::make_pair(N->getOperand(0), N->getValueType(0)))]; if (L) return L; L = N; } else { // Remove the node from the ArbitraryNodes map. std::vector RV(N->value_begin(), N->value_end()); std::vector Ops(N->op_begin(), N->op_end()); SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(), std::make_pair(RV, Ops))]; if (AN) return AN; AN = N; } } return 0; } /// FindModifiedNodeSlot - Find a slot for the specified node if its operands /// were replaced with those specified. If this node is never memoized, /// return null, otherwise return a pointer to the slot it would take. If a /// node already exists with these operands, the slot will be non-null. SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op) { if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) return 0; // Never add these nodes. // Check that remaining values produced are not flags. for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) if (N->getValueType(i) == MVT::Flag) return 0; // Never CSE anything that produces a flag. if (N->getNumValues() == 1) { return &UnaryOps[std::make_pair(N->getOpcode(), std::make_pair(Op, N->getValueType(0)))]; } else { // Remove the node from the ArbitraryNodes map. std::vector RV(N->value_begin(), N->value_end()); std::vector Ops; Ops.push_back(Op); return &ArbitraryNodes[std::make_pair(N->getOpcode(), std::make_pair(RV, Ops))]; } return 0; } /// FindModifiedNodeSlot - Find a slot for the specified node if its operands /// were replaced with those specified. If this node is never memoized, /// return null, otherwise return a pointer to the slot it would take. If a /// node already exists with these operands, the slot will be non-null. SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op1, SDOperand Op2) { if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) return 0; // Never add these nodes. // Check that remaining values produced are not flags. for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) if (N->getValueType(i) == MVT::Flag) return 0; // Never CSE anything that produces a flag. if (N->getNumValues() == 1) { return &BinaryOps[std::make_pair(N->getOpcode(), std::make_pair(Op1, Op2))]; } else { std::vector RV(N->value_begin(), N->value_end()); std::vector Ops; Ops.push_back(Op1); Ops.push_back(Op2); return &ArbitraryNodes[std::make_pair(N->getOpcode(), std::make_pair(RV, Ops))]; } return 0; } /// FindModifiedNodeSlot - Find a slot for the specified node if its operands /// were replaced with those specified. If this node is never memoized, /// return null, otherwise return a pointer to the slot it would take. If a /// node already exists with these operands, the slot will be non-null. SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, const std::vector &Ops) { if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) return 0; // Never add these nodes. // Check that remaining values produced are not flags. for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) if (N->getValueType(i) == MVT::Flag) return 0; // Never CSE anything that produces a flag. if (N->getNumValues() == 1) { if (N->getNumOperands() == 1) { return &UnaryOps[std::make_pair(N->getOpcode(), std::make_pair(Ops[0], N->getValueType(0)))]; } else if (N->getNumOperands() == 2) { return &BinaryOps[std::make_pair(N->getOpcode(), std::make_pair(Ops[0], Ops[1]))]; } else { return &OneResultNodes[std::make_pair(N->getOpcode(), std::make_pair(N->getValueType(0), Ops))]; } } else { if (N->getOpcode() == ISD::LOAD) { return &Loads[std::make_pair(Ops[1], std::make_pair(Ops[0], N->getValueType(0)))]; } else { std::vector RV(N->value_begin(), N->value_end()); return &ArbitraryNodes[std::make_pair(N->getOpcode(), std::make_pair(RV, Ops))]; } } return 0; } SelectionDAG::~SelectionDAG() { while (!AllNodes.empty()) { SDNode *N = AllNodes.begin(); delete [] N->OperandList; N->OperandList = 0; N->NumOperands = 0; AllNodes.pop_front(); } } SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) { if (Op.getValueType() == VT) return Op; int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT)); return getNode(ISD::AND, Op.getValueType(), Op, getConstant(Imm, Op.getValueType())); } SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) { assert(MVT::isInteger(VT) && "Cannot create FP integer constant!"); // Mask out any bits that are not valid for this constant. if (VT != MVT::i64) Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1; SDNode *&N = Constants[std::make_pair(Val, VT)]; if (N) return SDOperand(N, 0); N = new ConstantSDNode(false, Val, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getString(const std::string &Val) { StringSDNode *&N = StringNodes[Val]; if (!N) { N = new StringSDNode(Val); AllNodes.push_back(N); } return SDOperand(N, 0); } SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) { assert(MVT::isInteger(VT) && "Cannot create FP integer constant!"); // Mask out any bits that are not valid for this constant. if (VT != MVT::i64) Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1; SDNode *&N = TargetConstants[std::make_pair(Val, VT)]; if (N) return SDOperand(N, 0); N = new ConstantSDNode(true, Val, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) { assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!"); if (VT == MVT::f32) Val = (float)Val; // Mask out extra precision. // Do the map lookup using the actual bit pattern for the floating point // value, so that we don't have problems with 0.0 comparing equal to -0.0, and // we don't have issues with SNANs. SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)]; if (N) return SDOperand(N, 0); N = new ConstantFPSDNode(false, Val, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getTargetConstantFP(double Val, MVT::ValueType VT) { assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!"); if (VT == MVT::f32) Val = (float)Val; // Mask out extra precision. // Do the map lookup using the actual bit pattern for the floating point // value, so that we don't have problems with 0.0 comparing equal to -0.0, and // we don't have issues with SNANs. SDNode *&N = TargetConstantFPs[std::make_pair(DoubleToBits(Val), VT)]; if (N) return SDOperand(N, 0); N = new ConstantFPSDNode(true, Val, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV, MVT::ValueType VT, int offset) { SDNode *&N = GlobalValues[std::make_pair(GV, offset)]; if (N) return SDOperand(N, 0); N = new GlobalAddressSDNode(false, GV, VT, offset); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV, MVT::ValueType VT, int offset) { SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)]; if (N) return SDOperand(N, 0); N = new GlobalAddressSDNode(true, GV, VT, offset); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) { SDNode *&N = FrameIndices[FI]; if (N) return SDOperand(N, 0); N = new FrameIndexSDNode(FI, VT, false); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) { SDNode *&N = TargetFrameIndices[FI]; if (N) return SDOperand(N, 0); N = new FrameIndexSDNode(FI, VT, true); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT, unsigned Alignment, int Offset) { SDNode *&N = ConstantPoolIndices[std::make_pair(C, std::make_pair(Offset, Alignment))]; if (N) return SDOperand(N, 0); N = new ConstantPoolSDNode(false, C, VT, Offset, Alignment); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT, unsigned Alignment, int Offset) { SDNode *&N = TargetConstantPoolIndices[std::make_pair(C, std::make_pair(Offset, Alignment))]; if (N) return SDOperand(N, 0); N = new ConstantPoolSDNode(true, C, VT, Offset, Alignment); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { SDNode *&N = BBNodes[MBB]; if (N) return SDOperand(N, 0); N = new BasicBlockSDNode(MBB); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getValueType(MVT::ValueType VT) { if ((unsigned)VT >= ValueTypeNodes.size()) ValueTypeNodes.resize(VT+1); if (ValueTypeNodes[VT] == 0) { ValueTypeNodes[VT] = new VTSDNode(VT); AllNodes.push_back(ValueTypeNodes[VT]); } return SDOperand(ValueTypeNodes[VT], 0); } SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) { SDNode *&N = ExternalSymbols[Sym]; if (N) return SDOperand(N, 0); N = new ExternalSymbolSDNode(false, Sym, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT::ValueType VT) { SDNode *&N = TargetExternalSymbols[Sym]; if (N) return SDOperand(N, 0); N = new ExternalSymbolSDNode(true, Sym, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) { if ((unsigned)Cond >= CondCodeNodes.size()) CondCodeNodes.resize(Cond+1); if (CondCodeNodes[Cond] == 0) { CondCodeNodes[Cond] = new CondCodeSDNode(Cond); AllNodes.push_back(CondCodeNodes[Cond]); } return SDOperand(CondCodeNodes[Cond], 0); } SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) { RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)]; if (!Reg) { Reg = new RegisterSDNode(RegNo, VT); AllNodes.push_back(Reg); } return SDOperand(Reg, 0); } SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1, SDOperand N2, ISD::CondCode Cond) { // These setcc operations always fold. switch (Cond) { default: break; case ISD::SETFALSE: case ISD::SETFALSE2: return getConstant(0, VT); case ISD::SETTRUE: case ISD::SETTRUE2: return getConstant(1, VT); } if (ConstantSDNode *N2C = dyn_cast(N2.Val)) { uint64_t C2 = N2C->getValue(); if (ConstantSDNode *N1C = dyn_cast(N1.Val)) { uint64_t C1 = N1C->getValue(); // Sign extend the operands if required if (ISD::isSignedIntSetCC(Cond)) { C1 = N1C->getSignExtended(); C2 = N2C->getSignExtended(); } switch (Cond) { default: assert(0 && "Unknown integer setcc!"); case ISD::SETEQ: return getConstant(C1 == C2, VT); case ISD::SETNE: return getConstant(C1 != C2, VT); case ISD::SETULT: return getConstant(C1 < C2, VT); case ISD::SETUGT: return getConstant(C1 > C2, VT); case ISD::SETULE: return getConstant(C1 <= C2, VT); case ISD::SETUGE: return getConstant(C1 >= C2, VT); case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT); case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT); case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT); case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT); } } else { // If the LHS is a ZERO_EXTEND, perform the comparison on the input. if (N1.getOpcode() == ISD::ZERO_EXTEND) { unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType()); // If the comparison constant has bits in the upper part, the // zero-extended value could never match. if (C2 & (~0ULL << InSize)) { unsigned VSize = MVT::getSizeInBits(N1.getValueType()); switch (Cond) { case ISD::SETUGT: case ISD::SETUGE: case ISD::SETEQ: return getConstant(0, VT); case ISD::SETULT: case ISD::SETULE: case ISD::SETNE: return getConstant(1, VT); case ISD::SETGT: case ISD::SETGE: // True if the sign bit of C2 is set. return getConstant((C2 & (1ULL << VSize)) != 0, VT); case ISD::SETLT: case ISD::SETLE: // True if the sign bit of C2 isn't set. return getConstant((C2 & (1ULL << VSize)) == 0, VT); default: break; } } // Otherwise, we can perform the comparison with the low bits. switch (Cond) { case ISD::SETEQ: case ISD::SETNE: case ISD::SETUGT: case ISD::SETUGE: case ISD::SETULT: case ISD::SETULE: return getSetCC(VT, N1.getOperand(0), getConstant(C2, N1.getOperand(0).getValueType()), Cond); default: break; // todo, be more careful with signed comparisons } } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { MVT::ValueType ExtSrcTy = cast(N1.getOperand(1))->getVT(); unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy); MVT::ValueType ExtDstTy = N1.getValueType(); unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy); // If the extended part has any inconsistent bits, it cannot ever // compare equal. In other words, they have to be all ones or all // zeros. uint64_t ExtBits = (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1)); if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits) return getConstant(Cond == ISD::SETNE, VT); // Otherwise, make this a use of a zext. return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy), getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy), Cond); } uint64_t MinVal, MaxVal; unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0)); if (ISD::isSignedIntSetCC(Cond)) { MinVal = 1ULL << (OperandBitSize-1); if (OperandBitSize != 1) // Avoid X >> 64, which is undefined. MaxVal = ~0ULL >> (65-OperandBitSize); else MaxVal = 0; } else { MinVal = 0; MaxVal = ~0ULL >> (64-OperandBitSize); } // Canonicalize GE/LE comparisons to use GT/LT comparisons. if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { if (C2 == MinVal) return getConstant(1, VT); // X >= MIN --> true --C2; // X >= C1 --> X > (C1-1) return getSetCC(VT, N1, getConstant(C2, N2.getValueType()), (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); } if (Cond == ISD::SETLE || Cond == ISD::SETULE) { if (C2 == MaxVal) return getConstant(1, VT); // X <= MAX --> true ++C2; // X <= C1 --> X < (C1+1) return getSetCC(VT, N1, getConstant(C2, N2.getValueType()), (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); } if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal) return getConstant(0, VT); // X < MIN --> false // Canonicalize setgt X, Min --> setne X, Min if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal) return getSetCC(VT, N1, N2, ISD::SETNE); // If we have setult X, 1, turn it into seteq X, 0 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1) return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()), ISD::SETEQ); // If we have setugt X, Max-1, turn it into seteq X, Max else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1) return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()), ISD::SETEQ); // If we have "setcc X, C1", check to see if we can shrink the immediate // by changing cc. // SETUGT X, SINTMAX -> SETLT X, 0 if (Cond == ISD::SETUGT && OperandBitSize != 1 && C2 == (~0ULL >> (65-OperandBitSize))) return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT); // FIXME: Implement the rest of these. // Fold bit comparisons when we can. if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && VT == N1.getValueType() && N1.getOpcode() == ISD::AND) if (ConstantSDNode *AndRHS = dyn_cast(N1.getOperand(1))) { if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 // Perform the xform if the AND RHS is a single bit. if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) { return getNode(ISD::SRL, VT, N1, getConstant(Log2_64(AndRHS->getValue()), TLI.getShiftAmountTy())); } } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) { // (X & 8) == 8 --> (X & 8) >> 3 // Perform the xform if C2 is a single bit. if ((C2 & (C2-1)) == 0) { return getNode(ISD::SRL, VT, N1, getConstant(Log2_64(C2),TLI.getShiftAmountTy())); } } } } } else if (isa(N1.Val)) { // Ensure that the constant occurs on the RHS. return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond)); } if (ConstantFPSDNode *N1C = dyn_cast(N1.Val)) if (ConstantFPSDNode *N2C = dyn_cast(N2.Val)) { double C1 = N1C->getValue(), C2 = N2C->getValue(); switch (Cond) { default: break; // FIXME: Implement the rest of these! case ISD::SETEQ: return getConstant(C1 == C2, VT); case ISD::SETNE: return getConstant(C1 != C2, VT); case ISD::SETLT: return getConstant(C1 < C2, VT); case ISD::SETGT: return getConstant(C1 > C2, VT); case ISD::SETLE: return getConstant(C1 <= C2, VT); case ISD::SETGE: return getConstant(C1 >= C2, VT); } } else { // Ensure that the constant occurs on the RHS. return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond)); } // Could not fold it. return SDOperand(); } /// getNode - Gets or creates the specified node. /// SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) { SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)]; if (!N) { N = new SDNode(Opcode, VT); AllNodes.push_back(N); } return SDOperand(N, 0); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, SDOperand Operand) { unsigned Tmp1; // Constant fold unary operations with an integer constant operand. if (ConstantSDNode *C = dyn_cast(Operand.Val)) { uint64_t Val = C->getValue(); switch (Opcode) { default: break; case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT); case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: return getConstant(Val, VT); case ISD::TRUNCATE: return getConstant(Val, VT); case ISD::SINT_TO_FP: return getConstantFP(C->getSignExtended(), VT); case ISD::UINT_TO_FP: return getConstantFP(C->getValue(), VT); case ISD::BIT_CONVERT: if (VT == MVT::f32) { assert(C->getValueType(0) == MVT::i32 && "Invalid bit_convert!"); return getConstantFP(BitsToFloat(Val), VT); } else if (VT == MVT::f64) { assert(C->getValueType(0) == MVT::i64 && "Invalid bit_convert!"); return getConstantFP(BitsToDouble(Val), VT); } break; case ISD::BSWAP: switch(VT) { default: assert(0 && "Invalid bswap!"); break; case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT); case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT); case MVT::i64: return getConstant(ByteSwap_64(Val), VT); } break; case ISD::CTPOP: switch(VT) { default: assert(0 && "Invalid ctpop!"); break; case MVT::i1: return getConstant(Val != 0, VT); case MVT::i8: Tmp1 = (unsigned)Val & 0xFF; return getConstant(CountPopulation_32(Tmp1), VT); case MVT::i16: Tmp1 = (unsigned)Val & 0xFFFF; return getConstant(CountPopulation_32(Tmp1), VT); case MVT::i32: return getConstant(CountPopulation_32((unsigned)Val), VT); case MVT::i64: return getConstant(CountPopulation_64(Val), VT); } case ISD::CTLZ: switch(VT) { default: assert(0 && "Invalid ctlz!"); break; case MVT::i1: return getConstant(Val == 0, VT); case MVT::i8: Tmp1 = (unsigned)Val & 0xFF; return getConstant(CountLeadingZeros_32(Tmp1)-24, VT); case MVT::i16: Tmp1 = (unsigned)Val & 0xFFFF; return getConstant(CountLeadingZeros_32(Tmp1)-16, VT); case MVT::i32: return getConstant(CountLeadingZeros_32((unsigned)Val), VT); case MVT::i64: return getConstant(CountLeadingZeros_64(Val), VT); } case ISD::CTTZ: switch(VT) { default: assert(0 && "Invalid cttz!"); break; case MVT::i1: return getConstant(Val == 0, VT); case MVT::i8: Tmp1 = (unsigned)Val | 0x100; return getConstant(CountTrailingZeros_32(Tmp1), VT); case MVT::i16: Tmp1 = (unsigned)Val | 0x10000; return getConstant(CountTrailingZeros_32(Tmp1), VT); case MVT::i32: return getConstant(CountTrailingZeros_32((unsigned)Val), VT); case MVT::i64: return getConstant(CountTrailingZeros_64(Val), VT); } } } // Constant fold unary operations with an floating point constant operand. if (ConstantFPSDNode *C = dyn_cast(Operand.Val)) switch (Opcode) { case ISD::FNEG: return getConstantFP(-C->getValue(), VT); case ISD::FABS: return getConstantFP(fabs(C->getValue()), VT); case ISD::FP_ROUND: case ISD::FP_EXTEND: return getConstantFP(C->getValue(), VT); case ISD::FP_TO_SINT: return getConstant((int64_t)C->getValue(), VT); case ISD::FP_TO_UINT: return getConstant((uint64_t)C->getValue(), VT); case ISD::BIT_CONVERT: if (VT == MVT::i32) { assert(C->getValueType(0) == MVT::f32 && "Invalid bit_convert!"); return getConstant(FloatToBits(C->getValue()), VT); } else if (VT == MVT::i64) { assert(C->getValueType(0) == MVT::f64 && "Invalid bit_convert!"); return getConstant(DoubleToBits(C->getValue()), VT); } break; } unsigned OpOpcode = Operand.Val->getOpcode(); switch (Opcode) { case ISD::TokenFactor: return Operand; // Factor of one node? No factor. case ISD::SIGN_EXTEND: if (Operand.getValueType() == VT) return Operand; // noop extension assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!"); if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); break; case ISD::ZERO_EXTEND: if (Operand.getValueType() == VT) return Operand; // noop extension assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!"); if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0)); break; case ISD::ANY_EXTEND: if (Operand.getValueType() == VT) return Operand; // noop extension assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!"); if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND) // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); break; case ISD::TRUNCATE: if (Operand.getValueType() == VT) return Operand; // noop truncate assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!"); if (OpOpcode == ISD::TRUNCATE) return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ANY_EXTEND) { // If the source is smaller than the dest, we still need an extend. if (Operand.Val->getOperand(0).getValueType() < VT) return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); else if (Operand.Val->getOperand(0).getValueType() > VT) return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); else return Operand.Val->getOperand(0); } break; case ISD::BIT_CONVERT: // Basic sanity checking. assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType()) && "Cannot BIT_CONVERT between two different types!"); if (VT == Operand.getValueType()) return Operand; // noop conversion. if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x) return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0)); break; case ISD::SCALAR_TO_VECTOR: assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) && MVT::getVectorBaseType(VT) == Operand.getValueType() && "Illegal SCALAR_TO_VECTOR node!"); break; case ISD::FNEG: if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X) return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1), Operand.Val->getOperand(0)); if (OpOpcode == ISD::FNEG) // --X -> X return Operand.Val->getOperand(0); break; case ISD::FABS: if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) return getNode(ISD::FABS, VT, Operand.Val->getOperand(0)); break; } SDNode *N; if (VT != MVT::Flag) { // Don't CSE flag producing nodes SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))]; if (E) return SDOperand(E, 0); E = N = new SDNode(Opcode, Operand); } else { N = new SDNode(Opcode, Operand); } N->setValueTypes(VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2) { #ifndef NDEBUG switch (Opcode) { case ISD::TokenFactor: assert(VT == MVT::Other && N1.getValueType() == MVT::Other && N2.getValueType() == MVT::Other && "Invalid token factor!"); break; case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::UDIV: case ISD::UREM: case ISD::MULHU: case ISD::MULHS: assert(MVT::isInteger(VT) && "This operator does not apply to FP types!"); // fall through case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::SDIV: case ISD::SREM: assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops"); // fall through. case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FREM: assert(N1.getValueType() == N2.getValueType() && N1.getValueType() == VT && "Binary operator types must match!"); break; case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. assert(N1.getValueType() == VT && MVT::isFloatingPoint(N1.getValueType()) && MVT::isFloatingPoint(N2.getValueType()) && "Invalid FCOPYSIGN!"); break; case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::ROTL: case ISD::ROTR: assert(VT == N1.getValueType() && "Shift operators return type must be the same as their first arg"); assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) && VT != MVT::i1 && "Shifts only work on integers"); break; case ISD::FP_ROUND_INREG: { MVT::ValueType EVT = cast(N2)->getVT(); assert(VT == N1.getValueType() && "Not an inreg round!"); assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) && "Cannot FP_ROUND_INREG integer types"); assert(EVT <= VT && "Not rounding down!"); break; } case ISD::AssertSext: case ISD::AssertZext: case ISD::SIGN_EXTEND_INREG: { MVT::ValueType EVT = cast(N2)->getVT(); assert(VT == N1.getValueType() && "Not an inreg extend!"); assert(MVT::isInteger(VT) && MVT::isInteger(EVT) && "Cannot *_EXTEND_INREG FP types"); assert(EVT <= VT && "Not extending!"); } default: break; } #endif ConstantSDNode *N1C = dyn_cast(N1.Val); ConstantSDNode *N2C = dyn_cast(N2.Val); if (N1C) { if (N2C) { uint64_t C1 = N1C->getValue(), C2 = N2C->getValue(); switch (Opcode) { case ISD::ADD: return getConstant(C1 + C2, VT); case ISD::SUB: return getConstant(C1 - C2, VT); case ISD::MUL: return getConstant(C1 * C2, VT); case ISD::UDIV: if (C2) return getConstant(C1 / C2, VT); break; case ISD::UREM : if (C2) return getConstant(C1 % C2, VT); break; case ISD::SDIV : if (C2) return getConstant(N1C->getSignExtended() / N2C->getSignExtended(), VT); break; case ISD::SREM : if (C2) return getConstant(N1C->getSignExtended() % N2C->getSignExtended(), VT); break; case ISD::AND : return getConstant(C1 & C2, VT); case ISD::OR : return getConstant(C1 | C2, VT); case ISD::XOR : return getConstant(C1 ^ C2, VT); case ISD::SHL : return getConstant(C1 << C2, VT); case ISD::SRL : return getConstant(C1 >> C2, VT); case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT); case ISD::ROTL : return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)), VT); case ISD::ROTR : return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)), VT); default: break; } } else { // Cannonicalize constant to RHS if commutative if (isCommutativeBinOp(Opcode)) { std::swap(N1C, N2C); std::swap(N1, N2); } } } ConstantFPSDNode *N1CFP = dyn_cast(N1.Val); ConstantFPSDNode *N2CFP = dyn_cast(N2.Val); if (N1CFP) { if (N2CFP) { double C1 = N1CFP->getValue(), C2 = N2CFP->getValue(); switch (Opcode) { case ISD::FADD: return getConstantFP(C1 + C2, VT); case ISD::FSUB: return getConstantFP(C1 - C2, VT); case ISD::FMUL: return getConstantFP(C1 * C2, VT); case ISD::FDIV: if (C2) return getConstantFP(C1 / C2, VT); break; case ISD::FREM : if (C2) return getConstantFP(fmod(C1, C2), VT); break; case ISD::FCOPYSIGN: { union { double F; uint64_t I; } u1; union { double F; int64_t I; } u2; u1.F = C1; u2.F = C2; if (u2.I < 0) // Sign bit of RHS set? u1.I |= 1ULL << 63; // Set the sign bit of the LHS. else u1.I &= (1ULL << 63)-1; // Clear the sign bit of the LHS. return getConstantFP(u1.F, VT); } default: break; } } else { // Cannonicalize constant to RHS if commutative if (isCommutativeBinOp(Opcode)) { std::swap(N1CFP, N2CFP); std::swap(N1, N2); } } } // Finally, fold operations that do not require constants. switch (Opcode) { case ISD::FP_ROUND_INREG: if (cast(N2)->getVT() == VT) return N1; // Not actually rounding. break; case ISD::SIGN_EXTEND_INREG: { MVT::ValueType EVT = cast(N2)->getVT(); if (EVT == VT) return N1; // Not actually extending break; } // FIXME: figure out how to safely handle things like // int foo(int x) { return 1 << (x & 255); } // int bar() { return foo(256); } #if 0 case ISD::SHL: case ISD::SRL: case ISD::SRA: if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG && cast(N2.getOperand(1))->getVT() != MVT::i1) return getNode(Opcode, VT, N1, N2.getOperand(0)); else if (N2.getOpcode() == ISD::AND) if (ConstantSDNode *AndRHS = dyn_cast(N2.getOperand(1))) { // If the and is only masking out bits that cannot effect the shift, // eliminate the and. unsigned NumBits = MVT::getSizeInBits(VT); if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) return getNode(Opcode, VT, N1, N2.getOperand(0)); } break; #endif } // Memoize this node if possible. SDNode *N; if (VT != MVT::Flag) { SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))]; if (BON) return SDOperand(BON, 0); BON = N = new SDNode(Opcode, N1, N2); } else { N = new SDNode(Opcode, N1, N2); } N->setValueTypes(VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2, SDOperand N3) { // Perform various simplifications. ConstantSDNode *N1C = dyn_cast(N1.Val); ConstantSDNode *N2C = dyn_cast(N2.Val); ConstantSDNode *N3C = dyn_cast(N3.Val); switch (Opcode) { case ISD::SETCC: { // Use SimplifySetCC to simplify SETCC's. SDOperand Simp = SimplifySetCC(VT, N1, N2, cast(N3)->get()); if (Simp.Val) return Simp; break; } case ISD::SELECT: if (N1C) if (N1C->getValue()) return N2; // select true, X, Y -> X else return N3; // select false, X, Y -> Y if (N2 == N3) return N2; // select C, X, X -> X break; case ISD::BRCOND: if (N2C) if (N2C->getValue()) // Unconditional branch return getNode(ISD::BR, MVT::Other, N1, N3); else return N1; // Never-taken branch break; } std::vector Ops; Ops.reserve(3); Ops.push_back(N1); Ops.push_back(N2); Ops.push_back(N3); // Memoize node if it doesn't produce a flag. SDNode *N; if (VT != MVT::Flag) { SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))]; if (E) return SDOperand(E, 0); E = N = new SDNode(Opcode, N1, N2, N3); } else { N = new SDNode(Opcode, N1, N2, N3); } N->setValueTypes(VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4) { std::vector Ops; Ops.reserve(4); Ops.push_back(N1); Ops.push_back(N2); Ops.push_back(N3); Ops.push_back(N4); return getNode(Opcode, VT, Ops); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4, SDOperand N5) { std::vector Ops; Ops.reserve(5); Ops.push_back(N1); Ops.push_back(N2); Ops.push_back(N3); Ops.push_back(N4); Ops.push_back(N5); return getNode(Opcode, VT, Ops); } SDOperand SelectionDAG::getLoad(MVT::ValueType VT, SDOperand Chain, SDOperand Ptr, SDOperand SV) { SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))]; if (N) return SDOperand(N, 0); N = new SDNode(ISD::LOAD, Chain, Ptr, SV); // Loads have a token chain. setNodeValueTypes(N, VT, MVT::Other); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT, SDOperand Chain, SDOperand Ptr, SDOperand SV) { SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, EVT))]; if (N) return SDOperand(N, 0); std::vector Ops; Ops.reserve(5); Ops.push_back(Chain); Ops.push_back(Ptr); Ops.push_back(SV); Ops.push_back(getConstant(Count, MVT::i32)); Ops.push_back(getValueType(EVT)); std::vector VTs; VTs.reserve(2); VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other); // Add token chain. return getNode(ISD::VLOAD, VTs, Ops); } SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT, SDOperand Chain, SDOperand Ptr, SDOperand SV, MVT::ValueType EVT) { std::vector Ops; Ops.reserve(4); Ops.push_back(Chain); Ops.push_back(Ptr); Ops.push_back(SV); Ops.push_back(getValueType(EVT)); std::vector VTs; VTs.reserve(2); VTs.push_back(VT); VTs.push_back(MVT::Other); // Add token chain. return getNode(Opcode, VTs, Ops); } SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) { assert((!V || isa(V->getType())) && "SrcValue is not a pointer?"); SDNode *&N = ValueNodes[std::make_pair(V, Offset)]; if (N) return SDOperand(N, 0); N = new SrcValueSDNode(V, Offset); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getVAArg(MVT::ValueType VT, SDOperand Chain, SDOperand Ptr, SDOperand SV) { std::vector Ops; Ops.reserve(3); Ops.push_back(Chain); Ops.push_back(Ptr); Ops.push_back(SV); std::vector VTs; VTs.reserve(2); VTs.push_back(VT); VTs.push_back(MVT::Other); // Add token chain. return getNode(ISD::VAARG, VTs, Ops); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, std::vector &Ops) { switch (Ops.size()) { case 0: return getNode(Opcode, VT); case 1: return getNode(Opcode, VT, Ops[0]); case 2: return getNode(Opcode, VT, Ops[0], Ops[1]); case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]); default: break; } ConstantSDNode *N1C = dyn_cast(Ops[1].Val); switch (Opcode) { default: break; case ISD::TRUNCSTORE: { assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!"); MVT::ValueType EVT = cast(Ops[4])->getVT(); #if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store // If this is a truncating store of a constant, convert to the desired type // and store it instead. if (isa(Ops[0])) { SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1); if (isa(Op)) N1 = Op; } // Also for ConstantFP? #endif if (Ops[0].getValueType() == EVT) // Normal store? return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]); assert(Ops[1].getValueType() > EVT && "Not a truncation?"); assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) && "Can't do FP-INT conversion!"); break; } case ISD::SELECT_CC: { assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!"); assert(Ops[0].getValueType() == Ops[1].getValueType() && "LHS and RHS of condition must have same type!"); assert(Ops[2].getValueType() == Ops[3].getValueType() && "True and False arms of SelectCC must have same type!"); assert(Ops[2].getValueType() == VT && "select_cc node must be of same type as true and false value!"); break; } case ISD::BR_CC: { assert(Ops.size() == 5 && "BR_CC takes 5 operands!"); assert(Ops[2].getValueType() == Ops[3].getValueType() && "LHS/RHS of comparison should match types!"); break; } } // Memoize nodes. SDNode *N; if (VT != MVT::Flag) { SDNode *&E = OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))]; if (E) return SDOperand(E, 0); E = N = new SDNode(Opcode, Ops); } else { N = new SDNode(Opcode, Ops); } N->setValueTypes(VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getNode(unsigned Opcode, std::vector &ResultTys, std::vector &Ops) { if (ResultTys.size() == 1) return getNode(Opcode, ResultTys[0], Ops); switch (Opcode) { case ISD::EXTLOAD: case ISD::SEXTLOAD: case ISD::ZEXTLOAD: { MVT::ValueType EVT = cast(Ops[3])->getVT(); assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!"); // If they are asking for an extending load from/to the same thing, return a // normal load. if (ResultTys[0] == EVT) return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]); if (MVT::isVector(ResultTys[0])) { assert(EVT == MVT::getVectorBaseType(ResultTys[0]) && "Invalid vector extload!"); } else { assert(EVT < ResultTys[0] && "Should only be an extending load, not truncating!"); } assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) && "Cannot sign/zero extend a FP/Vector load!"); assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) && "Cannot convert from FP to Int or Int -> FP!"); break; } // FIXME: figure out how to safely handle things like // int foo(int x) { return 1 << (x & 255); } // int bar() { return foo(256); } #if 0 case ISD::SRA_PARTS: case ISD::SRL_PARTS: case ISD::SHL_PARTS: if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && cast(N3.getOperand(1))->getVT() != MVT::i1) return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); else if (N3.getOpcode() == ISD::AND) if (ConstantSDNode *AndRHS = dyn_cast(N3.getOperand(1))) { // If the and is only masking out bits that cannot effect the shift, // eliminate the and. unsigned NumBits = MVT::getSizeInBits(VT)*2; if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); } break; #endif } // Memoize the node unless it returns a flag. SDNode *N; if (ResultTys.back() != MVT::Flag) { SDNode *&E = ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))]; if (E) return SDOperand(E, 0); E = N = new SDNode(Opcode, Ops); } else { N = new SDNode(Opcode, Ops); } setNodeValueTypes(N, ResultTys); AllNodes.push_back(N); return SDOperand(N, 0); } void SelectionDAG::setNodeValueTypes(SDNode *N, std::vector &RetVals) { switch (RetVals.size()) { case 0: return; case 1: N->setValueTypes(RetVals[0]); return; case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return; default: break; } std::list >::iterator I = std::find(VTList.begin(), VTList.end(), RetVals); if (I == VTList.end()) { VTList.push_front(RetVals); I = VTList.begin(); } N->setValueTypes(&(*I)[0], I->size()); } void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1, MVT::ValueType VT2) { for (std::list >::iterator I = VTList.begin(), E = VTList.end(); I != E; ++I) { if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) { N->setValueTypes(&(*I)[0], 2); return; } } std::vector V; V.push_back(VT1); V.push_back(VT2); VTList.push_front(V); N->setValueTypes(&(*VTList.begin())[0], 2); } /// UpdateNodeOperands - *Mutate* the specified node in-place to have the /// specified operands. If the resultant node already exists in the DAG, /// this does not modify the specified node, instead it returns the node that /// already exists. If the resultant node does not exist in the DAG, the /// input node is returned. As a degenerate case, if you specify the same /// input operands as the node already has, the input node is returned. SDOperand SelectionDAG:: UpdateNodeOperands(SDOperand InN, SDOperand Op) { SDNode *N = InN.Val; assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); // Check to see if there is no change. if (Op == N->getOperand(0)) return InN; // See if the modified node already exists. SDNode **NewSlot = FindModifiedNodeSlot(N, Op); if (NewSlot && *NewSlot) return SDOperand(*NewSlot, InN.ResNo); // Nope it doesn't. Remove the node from it's current place in the maps. if (NewSlot) RemoveNodeFromCSEMaps(N); // Now we update the operands. N->OperandList[0].Val->removeUser(N); Op.Val->addUser(N); N->OperandList[0] = Op; // If this gets put into a CSE map, add it. if (NewSlot) *NewSlot = N; return InN; } SDOperand SelectionDAG:: UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) { SDNode *N = InN.Val; assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); // Check to see if there is no change. bool AnyChange = false; if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) return InN; // No operands changed, just return the input node. // See if the modified node already exists. SDNode **NewSlot = FindModifiedNodeSlot(N, Op1, Op2); if (NewSlot && *NewSlot) return SDOperand(*NewSlot, InN.ResNo); // Nope it doesn't. Remove the node from it's current place in the maps. if (NewSlot) RemoveNodeFromCSEMaps(N); // Now we update the operands. if (N->OperandList[0] != Op1) { N->OperandList[0].Val->removeUser(N); Op1.Val->addUser(N); N->OperandList[0] = Op1; } if (N->OperandList[1] != Op2) { N->OperandList[1].Val->removeUser(N); Op2.Val->addUser(N); N->OperandList[1] = Op2; } // If this gets put into a CSE map, add it. if (NewSlot) *NewSlot = N; return InN; } SDOperand SelectionDAG:: UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) { std::vector Ops; Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Op3); return UpdateNodeOperands(N, Ops); } SDOperand SelectionDAG:: UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4) { std::vector Ops; Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Op3); Ops.push_back(Op4); return UpdateNodeOperands(N, Ops); } SDOperand SelectionDAG:: UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4, SDOperand Op5) { std::vector Ops; Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Op3); Ops.push_back(Op4); Ops.push_back(Op5); return UpdateNodeOperands(N, Ops); } SDOperand SelectionDAG:: UpdateNodeOperands(SDOperand InN, const std::vector &Ops) { SDNode *N = InN.Val; assert(N->getNumOperands() == Ops.size() && "Update with wrong number of operands"); // Check to see if there is no change. unsigned NumOps = Ops.size(); bool AnyChange = false; for (unsigned i = 0; i != NumOps; ++i) { if (Ops[i] != N->getOperand(i)) { AnyChange = true; break; } } // No operands changed, just return the input node. if (!AnyChange) return InN; // See if the modified node already exists. SDNode **NewSlot = FindModifiedNodeSlot(N, Ops); if (NewSlot && *NewSlot) return SDOperand(*NewSlot, InN.ResNo); // Nope it doesn't. Remove the node from it's current place in the maps. if (NewSlot) RemoveNodeFromCSEMaps(N); // Now we update the operands. for (unsigned i = 0; i != NumOps; ++i) { if (N->OperandList[i] != Ops[i]) { N->OperandList[i].Val->removeUser(N); Ops[i].Val->addUser(N); N->OperandList[i] = Ops[i]; } } // If this gets put into a CSE map, add it. if (NewSlot) *NewSlot = N; return InN; } /// SelectNodeTo - These are used for target selectors to *mutate* the /// specified node to have the specified return type, Target opcode, and /// operands. Note that target opcodes are stored as /// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field. /// /// Note that SelectNodeTo returns the resultant node. If there is already a /// node of the specified opcode and operands, it returns that node instead of /// the current one. SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT) { // If an identical node already exists, use it. SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)]; if (ON) return SDOperand(ON, 0); RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT); ON = N; // Memoize the new node. return SDOperand(N, 0); } SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, SDOperand Op1) { // If an identical node already exists, use it. SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, std::make_pair(Op1, VT))]; if (ON) return SDOperand(ON, 0); RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT); N->setOperands(Op1); ON = N; // Memoize the new node. return SDOperand(N, 0); } SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, SDOperand Op1, SDOperand Op2) { // If an identical node already exists, use it. SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, std::make_pair(Op1, Op2))]; if (ON) return SDOperand(ON, 0); RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT); N->setOperands(Op1, Op2); ON = N; // Memoize the new node. return SDOperand(N, 0); } SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3) { // If an identical node already exists, use it. std::vector OpList; OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, std::make_pair(VT, OpList))]; if (ON) return SDOperand(ON, 0); RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT); N->setOperands(Op1, Op2, Op3); ON = N; // Memoize the new node. return SDOperand(N, 0); } SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4) { // If an identical node already exists, use it. std::vector OpList; OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); OpList.push_back(Op4); SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, std::make_pair(VT, OpList))]; if (ON) return SDOperand(ON, 0); RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT); N->setOperands(Op1, Op2, Op3, Op4); ON = N; // Memoize the new node. return SDOperand(N, 0); } SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3,SDOperand Op4, SDOperand Op5) { // If an identical node already exists, use it. std::vector OpList; OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); OpList.push_back(Op4); OpList.push_back(Op5); SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, std::make_pair(VT, OpList))]; if (ON) return SDOperand(ON, 0); RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT); N->setOperands(Op1, Op2, Op3, Op4, Op5); ON = N; // Memoize the new node. return SDOperand(N, 0); } SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3,SDOperand Op4, SDOperand Op5, SDOperand Op6) { // If an identical node already exists, use it. std::vector OpList; OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6); SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, std::make_pair(VT, OpList))]; if (ON) return SDOperand(ON, 0); RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT); N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6); ON = N; // Memoize the new node. return SDOperand(N, 0); } SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3,SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) { // If an identical node already exists, use it. std::vector OpList; OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6); OpList.push_back(Op7); SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, std::make_pair(VT, OpList))]; if (ON) return SDOperand(ON, 0); RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT); N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7); ON = N; // Memoize the new node. return SDOperand(N, 0); } SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3,SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7, SDOperand Op8) { // If an identical node already exists, use it. std::vector OpList; OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6); OpList.push_back(Op7); OpList.push_back(Op8); SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, std::make_pair(VT, OpList))]; if (ON) return SDOperand(ON, 0); RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); N->setValueTypes(VT); N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8); ON = N; // Memoize the new node. return SDOperand(N, 0); } SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2) { // If an identical node already exists, use it. std::vector OpList; OpList.push_back(Op1); OpList.push_back(Op2); std::vector VTList; VTList.push_back(VT1); VTList.push_back(VT2); SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, std::make_pair(VTList, OpList))]; if (ON) return SDOperand(ON, 0); RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); setNodeValueTypes(N, VT1, VT2); N->setOperands(Op1, Op2); ON = N; // Memoize the new node. return SDOperand(N, 0); } SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, SDOperand Op3) { // If an identical node already exists, use it. std::vector OpList; OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); std::vector VTList; VTList.push_back(VT1); VTList.push_back(VT2); SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, std::make_pair(VTList, OpList))]; if (ON) return SDOperand(ON, 0); RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); setNodeValueTypes(N, VT1, VT2); N->setOperands(Op1, Op2, Op3); ON = N; // Memoize the new node. return SDOperand(N, 0); } SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4) { // If an identical node already exists, use it. std::vector OpList; OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); OpList.push_back(Op4); std::vector VTList; VTList.push_back(VT1); VTList.push_back(VT2); SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, std::make_pair(VTList, OpList))]; if (ON) return SDOperand(ON, 0); RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); setNodeValueTypes(N, VT1, VT2); N->setOperands(Op1, Op2, Op3, Op4); ON = N; // Memoize the new node. return SDOperand(N, 0); } SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4, SDOperand Op5) { // If an identical node already exists, use it. std::vector OpList; OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3); OpList.push_back(Op4); OpList.push_back(Op5); std::vector VTList; VTList.push_back(VT1); VTList.push_back(VT2); SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, std::make_pair(VTList, OpList))]; if (ON) return SDOperand(ON, 0); RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); setNodeValueTypes(N, VT1, VT2); N->setOperands(Op1, Op2, Op3, Op4, Op5); ON = N; // Memoize the new node. return SDOperand(N, 0); } /// getTargetNode - These are used for target selectors to create a new node /// with specified return type(s), target opcode, and operands. /// /// Note that getTargetNode returns the resultant node. If there is already a /// node of the specified opcode and operands, it returns that node instead of /// the current one. SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) { return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, SDOperand Op1) { return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, SDOperand Op1, SDOperand Op2) { return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3) { return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4) { return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4, SDOperand Op5) { return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4, Op5).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4, SDOperand Op5, SDOperand Op6) { std::vector Ops; Ops.reserve(6); Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Op3); Ops.push_back(Op4); Ops.push_back(Op5); Ops.push_back(Op6); return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) { std::vector Ops; Ops.reserve(7); Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Op3); Ops.push_back(Op4); Ops.push_back(Op5); Ops.push_back(Op6); Ops.push_back(Op7); return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7, SDOperand Op8) { std::vector Ops; Ops.reserve(8); Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Op3); Ops.push_back(Op4); Ops.push_back(Op5); Ops.push_back(Op6); Ops.push_back(Op7); Ops.push_back(Op8); return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, std::vector &Ops) { return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1) { std::vector ResultTys; ResultTys.push_back(VT1); ResultTys.push_back(VT2); std::vector Ops; Ops.push_back(Op1); return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2) { std::vector ResultTys; ResultTys.push_back(VT1); ResultTys.push_back(VT2); std::vector Ops; Ops.push_back(Op1); Ops.push_back(Op2); return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, SDOperand Op3) { std::vector ResultTys; ResultTys.push_back(VT1); ResultTys.push_back(VT2); std::vector Ops; Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Op3); return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4) { std::vector ResultTys; ResultTys.push_back(VT1); ResultTys.push_back(VT2); std::vector Ops; Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Op3); Ops.push_back(Op4); return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4, SDOperand Op5) { std::vector ResultTys; ResultTys.push_back(VT1); ResultTys.push_back(VT2); std::vector Ops; Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Op3); Ops.push_back(Op4); Ops.push_back(Op5); return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4, SDOperand Op5, SDOperand Op6) { std::vector ResultTys; ResultTys.push_back(VT1); ResultTys.push_back(VT2); std::vector Ops; Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Op3); Ops.push_back(Op4); Ops.push_back(Op5); Ops.push_back(Op6); return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) { std::vector ResultTys; ResultTys.push_back(VT1); ResultTys.push_back(VT2); std::vector Ops; Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Op3); Ops.push_back(Op4); Ops.push_back(Op5); Ops.push_back(Op6); Ops.push_back(Op7); return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, MVT::ValueType VT3, SDOperand Op1, SDOperand Op2) { std::vector ResultTys; ResultTys.push_back(VT1); ResultTys.push_back(VT2); ResultTys.push_back(VT3); std::vector Ops; Ops.push_back(Op1); Ops.push_back(Op2); return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, MVT::ValueType VT3, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4, SDOperand Op5) { std::vector ResultTys; ResultTys.push_back(VT1); ResultTys.push_back(VT2); ResultTys.push_back(VT3); std::vector Ops; Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Op3); Ops.push_back(Op4); Ops.push_back(Op5); return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, MVT::ValueType VT3, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4, SDOperand Op5, SDOperand Op6) { std::vector ResultTys; ResultTys.push_back(VT1); ResultTys.push_back(VT2); ResultTys.push_back(VT3); std::vector Ops; Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Op3); Ops.push_back(Op4); Ops.push_back(Op5); Ops.push_back(Op6); return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, MVT::ValueType VT3, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) { std::vector ResultTys; ResultTys.push_back(VT1); ResultTys.push_back(VT2); ResultTys.push_back(VT3); std::vector Ops; Ops.push_back(Op1); Ops.push_back(Op2); Ops.push_back(Op3); Ops.push_back(Op4); Ops.push_back(Op5); Ops.push_back(Op6); Ops.push_back(Op7); return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, std::vector &Ops) { std::vector ResultTys; ResultTys.push_back(VT1); ResultTys.push_back(VT2); return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val; } // ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. /// /// This version assumes From/To have a single result value. /// void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN, std::vector *Deleted) { SDNode *From = FromN.Val, *To = ToN.Val; assert(From->getNumValues() == 1 && To->getNumValues() == 1 && "Cannot replace with this method!"); assert(From != To && "Cannot replace uses of with self"); while (!From->use_empty()) { // Process users until they are all gone. SDNode *U = *From->use_begin(); // This node is about to morph, remove its old self from the CSE maps. RemoveNodeFromCSEMaps(U); for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; I != E; ++I) if (I->Val == From) { From->removeUser(U); I->Val = To; To->addUser(U); } // Now that we have modified U, add it back to the CSE maps. If it already // exists there, recursively merge the results together. if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { ReplaceAllUsesWith(U, Existing, Deleted); // U is now dead. if (Deleted) Deleted->push_back(U); DeleteNodeNotInCSEMaps(U); } } } /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. /// /// This version assumes From/To have matching types and numbers of result /// values. /// void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To, std::vector *Deleted) { assert(From != To && "Cannot replace uses of with self"); assert(From->getNumValues() == To->getNumValues() && "Cannot use this version of ReplaceAllUsesWith!"); if (From->getNumValues() == 1) { // If possible, use the faster version. ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted); return; } while (!From->use_empty()) { // Process users until they are all gone. SDNode *U = *From->use_begin(); // This node is about to morph, remove its old self from the CSE maps. RemoveNodeFromCSEMaps(U); for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; I != E; ++I) if (I->Val == From) { From->removeUser(U); I->Val = To; To->addUser(U); } // Now that we have modified U, add it back to the CSE maps. If it already // exists there, recursively merge the results together. if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { ReplaceAllUsesWith(U, Existing, Deleted); // U is now dead. if (Deleted) Deleted->push_back(U); DeleteNodeNotInCSEMaps(U); } } } /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. /// /// This version can replace From with any result values. To must match the /// number and types of values returned by From. void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const std::vector &To, std::vector *Deleted) { assert(From->getNumValues() == To.size() && "Incorrect number of values to replace with!"); if (To.size() == 1 && To[0].Val->getNumValues() == 1) { // Degenerate case handled above. ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted); return; } while (!From->use_empty()) { // Process users until they are all gone. SDNode *U = *From->use_begin(); // This node is about to morph, remove its old self from the CSE maps. RemoveNodeFromCSEMaps(U); for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; I != E; ++I) if (I->Val == From) { const SDOperand &ToOp = To[I->ResNo]; From->removeUser(U); *I = ToOp; ToOp.Val->addUser(U); } // Now that we have modified U, add it back to the CSE maps. If it already // exists there, recursively merge the results together. if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { ReplaceAllUsesWith(U, Existing, Deleted); // U is now dead. if (Deleted) Deleted->push_back(U); DeleteNodeNotInCSEMaps(U); } } } /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving /// uses of other values produced by From.Val alone. The Deleted vector is /// handled the same was as for ReplaceAllUsesWith. void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To, std::vector &Deleted) { assert(From != To && "Cannot replace a value with itself"); // Handle the simple, trivial, case efficiently. if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) { ReplaceAllUsesWith(From, To, &Deleted); return; } // Get all of the users in a nice, deterministically ordered, uniqued set. SetVector Users(From.Val->use_begin(), From.Val->use_end()); while (!Users.empty()) { // We know that this user uses some value of From. If it is the right // value, update it. SDNode *User = Users.back(); Users.pop_back(); for (SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands; Op != E; ++Op) { if (*Op == From) { // Okay, we know this user needs to be updated. Remove its old self // from the CSE maps. RemoveNodeFromCSEMaps(User); // Update all operands that match "From". for (; Op != E; ++Op) { if (*Op == From) { From.Val->removeUser(User); *Op = To; To.Val->addUser(User); } } // Now that we have modified User, add it back to the CSE maps. If it // already exists there, recursively merge the results together. if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) { unsigned NumDeleted = Deleted.size(); ReplaceAllUsesWith(User, Existing, &Deleted); // User is now dead. Deleted.push_back(User); DeleteNodeNotInCSEMaps(User); // We have to be careful here, because ReplaceAllUsesWith could have // deleted a user of From, which means there may be dangling pointers // in the "Users" setvector. Scan over the deleted node pointers and // remove them from the setvector. for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i) Users.remove(Deleted[i]); } break; // Exit the operand scanning loop. } } } } //===----------------------------------------------------------------------===// // SDNode Class //===----------------------------------------------------------------------===// /// getValueTypeList - Return a pointer to the specified value type. /// MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) { static MVT::ValueType VTs[MVT::LAST_VALUETYPE]; VTs[VT] = VT; return &VTs[VT]; } /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the /// indicated value. This method ignores uses of other values defined by this /// operation. bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { assert(Value < getNumValues() && "Bad value!"); // If there is only one value, this is easy. if (getNumValues() == 1) return use_size() == NUses; if (Uses.size() < NUses) return false; SDOperand TheValue(const_cast(this), Value); std::set UsersHandled; for (std::vector::const_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) { SDNode *User = *UI; if (User->getNumOperands() == 1 || UsersHandled.insert(User).second) // First time we've seen this? for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) if (User->getOperand(i) == TheValue) { if (NUses == 0) return false; // too many uses --NUses; } } // Found exactly the right number of uses? return NUses == 0; } // isOnlyUse - Return true if this node is the only use of N. bool SDNode::isOnlyUse(SDNode *N) const { bool Seen = false; for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { SDNode *User = *I; if (User == this) Seen = true; else return false; } return Seen; } // isOperand - Return true if this node is an operand of N. bool SDOperand::isOperand(SDNode *N) const { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) if (*this == N->getOperand(i)) return true; return false; } bool SDNode::isOperand(SDNode *N) const { for (unsigned i = 0, e = N->NumOperands; i != e; ++i) if (this == N->OperandList[i].Val) return true; return false; } const char *SDNode::getOperationName(const SelectionDAG *G) const { switch (getOpcode()) { default: if (getOpcode() < ISD::BUILTIN_OP_END) return "<>"; else { if (G) { if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo()) if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes()) return TII->getName(getOpcode()-ISD::BUILTIN_OP_END); TargetLowering &TLI = G->getTargetLoweringInfo(); const char *Name = TLI.getTargetNodeName(getOpcode()); if (Name) return Name; } return "<>"; } case ISD::PCMARKER: return "PCMarker"; case ISD::READCYCLECOUNTER: return "ReadCycleCounter"; case ISD::SRCVALUE: return "SrcValue"; case ISD::EntryToken: return "EntryToken"; case ISD::TokenFactor: return "TokenFactor"; case ISD::AssertSext: return "AssertSext"; case ISD::AssertZext: return "AssertZext"; case ISD::STRING: return "String"; case ISD::BasicBlock: return "BasicBlock"; case ISD::VALUETYPE: return "ValueType"; case ISD::Register: return "Register"; case ISD::Constant: return "Constant"; case ISD::ConstantFP: return "ConstantFP"; case ISD::GlobalAddress: return "GlobalAddress"; case ISD::FrameIndex: return "FrameIndex"; case ISD::ConstantPool: return "ConstantPool"; case ISD::ExternalSymbol: return "ExternalSymbol"; case ISD::BUILD_VECTOR: return "BUILD_VECTOR"; case ISD::TargetConstant: return "TargetConstant"; case ISD::TargetConstantFP:return "TargetConstantFP"; case ISD::TargetGlobalAddress: return "TargetGlobalAddress"; case ISD::TargetFrameIndex: return "TargetFrameIndex"; case ISD::TargetConstantPool: return "TargetConstantPool"; case ISD::TargetExternalSymbol: return "TargetExternalSymbol"; case ISD::VBUILD_VECTOR: return "VBUILD_VECTOR"; case ISD::CopyToReg: return "CopyToReg"; case ISD::CopyFromReg: return "CopyFromReg"; case ISD::UNDEF: return "undef"; case ISD::MERGE_VALUES: return "mergevalues"; case ISD::INLINEASM: return "inlineasm"; case ISD::HANDLENODE: return "handlenode"; // Unary operators case ISD::FABS: return "fabs"; case ISD::FNEG: return "fneg"; case ISD::FSQRT: return "fsqrt"; case ISD::FSIN: return "fsin"; case ISD::FCOS: return "fcos"; // Binary operators case ISD::ADD: return "add"; case ISD::SUB: return "sub"; case ISD::MUL: return "mul"; case ISD::MULHU: return "mulhu"; case ISD::MULHS: return "mulhs"; case ISD::SDIV: return "sdiv"; case ISD::UDIV: return "udiv"; case ISD::SREM: return "srem"; case ISD::UREM: return "urem"; case ISD::AND: return "and"; case ISD::OR: return "or"; case ISD::XOR: return "xor"; case ISD::SHL: return "shl"; case ISD::SRA: return "sra"; case ISD::SRL: return "srl"; case ISD::ROTL: return "rotl"; case ISD::ROTR: return "rotr"; case ISD::FADD: return "fadd"; case ISD::FSUB: return "fsub"; case ISD::FMUL: return "fmul"; case ISD::FDIV: return "fdiv"; case ISD::FREM: return "frem"; case ISD::FCOPYSIGN: return "fcopysign"; case ISD::VADD: return "vadd"; case ISD::VSUB: return "vsub"; case ISD::VMUL: return "vmul"; case ISD::SETCC: return "setcc"; case ISD::SELECT: return "select"; case ISD::SELECT_CC: return "select_cc"; case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt"; case ISD::VINSERT_VECTOR_ELT: return "vinsert_vector_elt"; case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector"; case ISD::ADDC: return "addc"; case ISD::ADDE: return "adde"; case ISD::SUBC: return "subc"; case ISD::SUBE: return "sube"; case ISD::SHL_PARTS: return "shl_parts"; case ISD::SRA_PARTS: return "sra_parts"; case ISD::SRL_PARTS: return "srl_parts"; // Conversion operators. case ISD::SIGN_EXTEND: return "sign_extend"; case ISD::ZERO_EXTEND: return "zero_extend"; case ISD::ANY_EXTEND: return "any_extend"; case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg"; case ISD::TRUNCATE: return "truncate"; case ISD::FP_ROUND: return "fp_round"; case ISD::FP_ROUND_INREG: return "fp_round_inreg"; case ISD::FP_EXTEND: return "fp_extend"; case ISD::SINT_TO_FP: return "sint_to_fp"; case ISD::UINT_TO_FP: return "uint_to_fp"; case ISD::FP_TO_SINT: return "fp_to_sint"; case ISD::FP_TO_UINT: return "fp_to_uint"; case ISD::BIT_CONVERT: return "bit_convert"; // Control flow instructions case ISD::BR: return "br"; case ISD::BRCOND: return "brcond"; case ISD::BR_CC: return "br_cc"; case ISD::RET: return "ret"; case ISD::CALLSEQ_START: return "callseq_start"; case ISD::CALLSEQ_END: return "callseq_end"; // Other operators case ISD::LOAD: return "load"; case ISD::STORE: return "store"; case ISD::VLOAD: return "vload"; case ISD::EXTLOAD: return "extload"; case ISD::SEXTLOAD: return "sextload"; case ISD::ZEXTLOAD: return "zextload"; case ISD::TRUNCSTORE: return "truncstore"; case ISD::VAARG: return "vaarg"; case ISD::VACOPY: return "vacopy"; case ISD::VAEND: return "vaend"; case ISD::VASTART: return "vastart"; case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc"; case ISD::EXTRACT_ELEMENT: return "extract_element"; case ISD::BUILD_PAIR: return "build_pair"; case ISD::STACKSAVE: return "stacksave"; case ISD::STACKRESTORE: return "stackrestore"; // Block memory operations. case ISD::MEMSET: return "memset"; case ISD::MEMCPY: return "memcpy"; case ISD::MEMMOVE: return "memmove"; // Bit manipulation case ISD::BSWAP: return "bswap"; case ISD::CTPOP: return "ctpop"; case ISD::CTTZ: return "cttz"; case ISD::CTLZ: return "ctlz"; // Debug info case ISD::LOCATION: return "location"; case ISD::DEBUG_LOC: return "debug_loc"; case ISD::DEBUG_LABEL: return "debug_label"; case ISD::CONDCODE: switch (cast(this)->get()) { default: assert(0 && "Unknown setcc condition!"); case ISD::SETOEQ: return "setoeq"; case ISD::SETOGT: return "setogt"; case ISD::SETOGE: return "setoge"; case ISD::SETOLT: return "setolt"; case ISD::SETOLE: return "setole"; case ISD::SETONE: return "setone"; case ISD::SETO: return "seto"; case ISD::SETUO: return "setuo"; case ISD::SETUEQ: return "setue"; case ISD::SETUGT: return "setugt"; case ISD::SETUGE: return "setuge"; case ISD::SETULT: return "setult"; case ISD::SETULE: return "setule"; case ISD::SETUNE: return "setune"; case ISD::SETEQ: return "seteq"; case ISD::SETGT: return "setgt"; case ISD::SETGE: return "setge"; case ISD::SETLT: return "setlt"; case ISD::SETLE: return "setle"; case ISD::SETNE: return "setne"; } } } void SDNode::dump() const { dump(0); } void SDNode::dump(const SelectionDAG *G) const { std::cerr << (void*)this << ": "; for (unsigned i = 0, e = getNumValues(); i != e; ++i) { if (i) std::cerr << ","; if (getValueType(i) == MVT::Other) std::cerr << "ch"; else std::cerr << MVT::getValueTypeString(getValueType(i)); } std::cerr << " = " << getOperationName(G); std::cerr << " "; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { if (i) std::cerr << ", "; std::cerr << (void*)getOperand(i).Val; if (unsigned RN = getOperand(i).ResNo) std::cerr << ":" << RN; } if (const ConstantSDNode *CSDN = dyn_cast(this)) { std::cerr << "<" << CSDN->getValue() << ">"; } else if (const ConstantFPSDNode *CSDN = dyn_cast(this)) { std::cerr << "<" << CSDN->getValue() << ">"; } else if (const GlobalAddressSDNode *GADN = dyn_cast(this)) { int offset = GADN->getOffset(); std::cerr << "<"; WriteAsOperand(std::cerr, GADN->getGlobal()) << ">"; if (offset > 0) std::cerr << " + " << offset; else std::cerr << " " << offset; } else if (const FrameIndexSDNode *FIDN = dyn_cast(this)) { std::cerr << "<" << FIDN->getIndex() << ">"; } else if (const ConstantPoolSDNode *CP = dyn_cast(this)){ int offset = CP->getOffset(); std::cerr << "<" << *CP->get() << ">"; if (offset > 0) std::cerr << " + " << offset; else std::cerr << " " << offset; } else if (const BasicBlockSDNode *BBDN = dyn_cast(this)) { std::cerr << "<"; const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock(); if (LBB) std::cerr << LBB->getName() << " "; std::cerr << (const void*)BBDN->getBasicBlock() << ">"; } else if (const RegisterSDNode *R = dyn_cast(this)) { if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) { std::cerr << " " <getTarget().getRegisterInfo()->getName(R->getReg()); } else { std::cerr << " #" << R->getReg(); } } else if (const ExternalSymbolSDNode *ES = dyn_cast(this)) { std::cerr << "'" << ES->getSymbol() << "'"; } else if (const SrcValueSDNode *M = dyn_cast(this)) { if (M->getValue()) std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">"; else std::cerr << "getOffset() << ">"; } else if (const VTSDNode *N = dyn_cast(this)) { std::cerr << ":" << getValueTypeString(N->getVT()); } } static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) if (N->getOperand(i).Val->hasOneUse()) DumpNodes(N->getOperand(i).Val, indent+2, G); else std::cerr << "\n" << std::string(indent+2, ' ') << (void*)N->getOperand(i).Val << ": "; std::cerr << "\n" << std::string(indent, ' '); N->dump(G); } void SelectionDAG::dump() const { std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:"; std::vector Nodes; for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I) Nodes.push_back(I); std::sort(Nodes.begin(), Nodes.end()); for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val) DumpNodes(Nodes[i], 2, this); } DumpNodes(getRoot().Val, 2, this); std::cerr << "\n\n"; } /// InsertISelMapEntry - A helper function to insert a key / element pair /// into a SDOperand to SDOperand map. This is added to avoid the map /// insertion operator from being inlined. void SelectionDAG::InsertISelMapEntry(std::map &Map, SDNode *Key, unsigned KeyResNo, SDNode *Element, unsigned ElementResNo) { Map.insert(std::make_pair(SDOperand(Key, KeyResNo), SDOperand(Element, ElementResNo))); }