//===- FuzzerTracePC.cpp - PC tracing--------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Trace PCs. // This module implements __sanitizer_cov_trace_pc_guard[_init], // the callback required for -fsanitize-coverage=trace-pc-guard instrumentation. // //===----------------------------------------------------------------------===// #include "FuzzerCorpus.h" #include "FuzzerDefs.h" #include "FuzzerDictionary.h" #include "FuzzerExtFunctions.h" #include "FuzzerIO.h" #include "FuzzerTracePC.h" #include "FuzzerUtil.h" #include "FuzzerValueBitMap.h" #include #include #include // The coverage counters and PCs. // These are declared as global variables named "__sancov_*" to simplify // experiments with inlined instrumentation. alignas(8) uint8_t __sancov_trace_pc_guard_8bit_counters[fuzzer::TracePC::kNumPCs]; uintptr_t __sancov_trace_pc_pcs[fuzzer::TracePC::kNumPCs]; namespace fuzzer { TracePC TPC; uint8_t *TracePC::Counters() const { return __sancov_trace_pc_guard_8bit_counters; } uintptr_t *TracePC::PCs() const { return __sancov_trace_pc_pcs; } ATTRIBUTE_NO_SANITIZE_ALL void TracePC::HandleTrace(uint32_t *Guard, uintptr_t PC) { uint32_t Idx = *Guard; __sancov_trace_pc_pcs[Idx] = PC; __sancov_trace_pc_guard_8bit_counters[Idx]++; } size_t TracePC::GetTotalPCCoverage() { size_t Res = 0; for (size_t i = 1, N = GetNumPCs(); i < N; i++) if (PCs()[i]) Res++; return Res; } void TracePC::HandleInit(uint32_t *Start, uint32_t *Stop) { if (Start == Stop || *Start) return; assert(NumModules < sizeof(Modules) / sizeof(Modules[0])); for (uint32_t *P = Start; P < Stop; P++) { NumGuards++; if (NumGuards == kNumPCs) { RawPrint( "WARNING: The binary has too many instrumented PCs.\n" " You may want to reduce the size of the binary\n" " for more efficient fuzzing and precise coverage data\n"); } *P = NumGuards % kNumPCs; } Modules[NumModules].Start = Start; Modules[NumModules].Stop = Stop; NumModules++; } void TracePC::PrintModuleInfo() { Printf("INFO: Loaded %zd modules (%zd guards): ", NumModules, NumGuards); for (size_t i = 0; i < NumModules; i++) Printf("[%p, %p), ", Modules[i].Start, Modules[i].Stop); Printf("\n"); } ATTRIBUTE_NO_SANITIZE_ALL void TracePC::HandleCallerCallee(uintptr_t Caller, uintptr_t Callee) { const uintptr_t kBits = 12; const uintptr_t kMask = (1 << kBits) - 1; uintptr_t Idx = (Caller & kMask) | ((Callee & kMask) << kBits); ValueProfileMap.AddValueModPrime(Idx); } void TracePC::InitializePrintNewPCs() { if (!DoPrintNewPCs) return; assert(!PrintedPCs); PrintedPCs = new std::set; for (size_t i = 1; i < GetNumPCs(); i++) if (PCs()[i]) PrintedPCs->insert(PCs()[i]); } void TracePC::PrintNewPCs() { if (!DoPrintNewPCs) return; assert(PrintedPCs); for (size_t i = 1; i < GetNumPCs(); i++) if (PCs()[i] && PrintedPCs->insert(PCs()[i]).second) PrintPC("\tNEW_PC: %p %F %L\n", "\tNEW_PC: %p\n", PCs()[i]); } void TracePC::PrintCoverage() { if (!EF->__sanitizer_symbolize_pc || !EF->__sanitizer_get_module_and_offset_for_pc) { Printf("INFO: __sanitizer_symbolize_pc or " "__sanitizer_get_module_and_offset_for_pc is not available," " not printing coverage\n"); return; } std::map> CoveredPCsPerModule; std::map ModuleOffsets; std::set CoveredDirs, CoveredFiles, CoveredFunctions, CoveredLines; Printf("COVERAGE:\n"); for (size_t i = 1; i < GetNumPCs(); i++) { uintptr_t PC = PCs()[i]; if (!PC) continue; std::string FileStr = DescribePC("%s", PC); if (!IsInterestingCoverageFile(FileStr)) continue; std::string FixedPCStr = DescribePC("%p", PC); std::string FunctionStr = DescribePC("%F", PC); std::string LineStr = DescribePC("%l", PC); char ModulePathRaw[4096] = ""; // What's PATH_MAX in portable C++? void *OffsetRaw = nullptr; if (!EF->__sanitizer_get_module_and_offset_for_pc( reinterpret_cast(PC), ModulePathRaw, sizeof(ModulePathRaw), &OffsetRaw)) continue; std::string Module = ModulePathRaw; uintptr_t FixedPC = std::stol(FixedPCStr, 0, 16); uintptr_t PcOffset = reinterpret_cast(OffsetRaw); ModuleOffsets[Module] = FixedPC - PcOffset; CoveredPCsPerModule[Module].push_back(PcOffset); CoveredFunctions.insert(FunctionStr); CoveredFiles.insert(FileStr); CoveredDirs.insert(DirName(FileStr)); if (!CoveredLines.insert(FileStr + ":" + LineStr).second) continue; Printf("COVERED: %s %s:%s\n", FunctionStr.c_str(), FileStr.c_str(), LineStr.c_str()); } std::string CoveredDirsStr; for (auto &Dir : CoveredDirs) { if (!CoveredDirsStr.empty()) CoveredDirsStr += ","; CoveredDirsStr += Dir; } Printf("COVERED_DIRS: %s\n", CoveredDirsStr.c_str()); for (auto &M : CoveredPCsPerModule) { std::set UncoveredFiles, UncoveredFunctions; std::map > UncoveredLines; // Func+File => lines auto &ModuleName = M.first; auto &CoveredOffsets = M.second; uintptr_t ModuleOffset = ModuleOffsets[ModuleName]; std::sort(CoveredOffsets.begin(), CoveredOffsets.end()); Printf("MODULE_WITH_COVERAGE: %s\n", ModuleName.c_str()); // sancov does not yet fully support DSOs. // std::string Cmd = "sancov -print-coverage-pcs " + ModuleName; std::string Cmd = DisassembleCmd(ModuleName) + " | " + SearchRegexCmd("call.*__sanitizer_cov_trace_pc_guard"); std::string SanCovOutput; if (!ExecuteCommandAndReadOutput(Cmd, &SanCovOutput)) { Printf("INFO: Command failed: %s\n", Cmd.c_str()); continue; } std::istringstream ISS(SanCovOutput); std::string S; while (std::getline(ISS, S, '\n')) { size_t PcOffsetEnd = S.find(':'); if (PcOffsetEnd == std::string::npos) continue; S.resize(PcOffsetEnd); uintptr_t PcOffset = std::stol(S, 0, 16); if (!std::binary_search(CoveredOffsets.begin(), CoveredOffsets.end(), PcOffset)) { uintptr_t PC = ModuleOffset + PcOffset; auto FileStr = DescribePC("%s", PC); if (!IsInterestingCoverageFile(FileStr)) continue; if (CoveredFiles.count(FileStr) == 0) { UncoveredFiles.insert(FileStr); continue; } auto FunctionStr = DescribePC("%F", PC); if (CoveredFunctions.count(FunctionStr) == 0) { UncoveredFunctions.insert(FunctionStr); continue; } std::string LineStr = DescribePC("%l", PC); uintptr_t Line = std::stoi(LineStr); std::string FileLineStr = FileStr + ":" + LineStr; if (CoveredLines.count(FileLineStr) == 0) UncoveredLines[FunctionStr + " " + FileStr].insert(Line); } } for (auto &FileLine: UncoveredLines) for (int Line : FileLine.second) Printf("UNCOVERED_LINE: %s:%d\n", FileLine.first.c_str(), Line); for (auto &Func : UncoveredFunctions) Printf("UNCOVERED_FUNC: %s\n", Func.c_str()); for (auto &File : UncoveredFiles) Printf("UNCOVERED_FILE: %s\n", File.c_str()); } } inline ALWAYS_INLINE uintptr_t GetPreviousInstructionPc(uintptr_t PC) { // TODO: this implementation is x86 only. // see sanitizer_common GetPreviousInstructionPc for full implementation. return PC - 1; } void TracePC::DumpCoverage() { if (EF->__sanitizer_dump_coverage) { std::vector PCsCopy(GetNumPCs()); for (size_t i = 0; i < GetNumPCs(); i++) PCsCopy[i] = PCs()[i] ? GetPreviousInstructionPc(PCs()[i]) : 0; EF->__sanitizer_dump_coverage(PCsCopy.data(), PCsCopy.size()); } } // Value profile. // We keep track of various values that affect control flow. // These values are inserted into a bit-set-based hash map. // Every new bit in the map is treated as a new coverage. // // For memcmp/strcmp/etc the interesting value is the length of the common // prefix of the parameters. // For cmp instructions the interesting value is a XOR of the parameters. // The interesting value is mixed up with the PC and is then added to the map. ATTRIBUTE_NO_SANITIZE_ADDRESS void TracePC::AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2, size_t n, bool StopAtZero) { if (!n) return; size_t Len = std::min(n, Word::GetMaxSize()); const uint8_t *A1 = reinterpret_cast(s1); const uint8_t *A2 = reinterpret_cast(s2); uint8_t B1[Word::kMaxSize]; uint8_t B2[Word::kMaxSize]; // Copy the data into locals in this non-msan-instrumented function // to avoid msan complaining further. size_t Hash = 0; // Compute some simple hash of both strings. for (size_t i = 0; i < Len; i++) { B1[i] = A1[i]; B2[i] = A2[i]; size_t T = B1[i]; Hash ^= (T << 8) | B2[i]; } size_t I = 0; for (; I < Len; I++) if (B1[I] != B2[I] || (StopAtZero && B1[I] == 0)) break; size_t PC = reinterpret_cast(caller_pc); size_t Idx = (PC & 4095) | (I << 12); ValueProfileMap.AddValue(Idx); TORCW.Insert(Idx ^ Hash, Word(B1, Len), Word(B2, Len)); } template ATTRIBUTE_TARGET_POPCNT ALWAYS_INLINE ATTRIBUTE_NO_SANITIZE_ALL void TracePC::HandleCmp(uintptr_t PC, T Arg1, T Arg2) { uint64_t ArgXor = Arg1 ^ Arg2; uint64_t ArgDistance = __builtin_popcountl(ArgXor) + 1; // [1,65] uintptr_t Idx = ((PC & 4095) + 1) * ArgDistance; if (sizeof(T) == 4) TORC4.Insert(ArgXor, Arg1, Arg2); else if (sizeof(T) == 8) TORC8.Insert(ArgXor, Arg1, Arg2); ValueProfileMap.AddValue(Idx); } } // namespace fuzzer extern "C" { ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL void __sanitizer_cov_trace_pc_guard(uint32_t *Guard) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleTrace(Guard, PC); } ATTRIBUTE_INTERFACE void __sanitizer_cov_trace_pc_guard_init(uint32_t *Start, uint32_t *Stop) { fuzzer::TPC.HandleInit(Start, Stop); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL void __sanitizer_cov_trace_pc_indir(uintptr_t Callee) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCallerCallee(PC, Callee); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_cmp8(uint64_t Arg1, uint64_t Arg2) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_cmp4(uint32_t Arg1, uint32_t Arg2) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_cmp2(uint16_t Arg1, uint16_t Arg2) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_cmp1(uint8_t Arg1, uint8_t Arg2) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) { uint64_t N = Cases[0]; uint64_t ValSizeInBits = Cases[1]; uint64_t *Vals = Cases + 2; // Skip the most common and the most boring case. if (Vals[N - 1] < 256 && Val < 256) return; uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); size_t i; uint64_t Token = 0; for (i = 0; i < N; i++) { Token = Val ^ Vals[i]; if (Val < Vals[i]) break; } if (ValSizeInBits == 16) fuzzer::TPC.HandleCmp(PC + i, static_cast(Token), (uint16_t)(0)); else if (ValSizeInBits == 32) fuzzer::TPC.HandleCmp(PC + i, static_cast(Token), (uint32_t)(0)); else fuzzer::TPC.HandleCmp(PC + i, Token, (uint64_t)(0)); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_div4(uint32_t Val) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Val, (uint32_t)0); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_div8(uint64_t Val) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Val, (uint64_t)0); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_gep(uintptr_t Idx) { uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); fuzzer::TPC.HandleCmp(PC, Idx, (uintptr_t)0); } } // extern "C"