//===- InlineSimple.cpp - Code to perform simple function inlining --------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements bottom-up inlining of functions into callees. // //===----------------------------------------------------------------------===// #include "Inliner.h" #include "llvm/Instructions.h" #include "llvm/Function.h" #include "llvm/Type.h" #include "llvm/Support/CallSite.h" #include "llvm/Transforms/IPO.h" using namespace llvm; namespace { struct ArgInfo { unsigned ConstantWeight; unsigned AllocaWeight; ArgInfo(unsigned CWeight, unsigned AWeight) : ConstantWeight(CWeight), AllocaWeight(AWeight) {} }; // FunctionInfo - For each function, calculate the size of it in blocks and // instructions. struct FunctionInfo { // NumInsts, NumBlocks - Keep track of how large each function is, which is // used to estimate the code size cost of inlining it. unsigned NumInsts, NumBlocks; // ArgumentWeights - Each formal argument of the function is inspected to // see if it is used in any contexts where making it a constant or alloca // would reduce the code size. If so, we add some value to the argument // entry here. std::vector ArgumentWeights; FunctionInfo() : NumInsts(0), NumBlocks(0) {} }; class SimpleInliner : public Inliner { std::map CachedFunctionInfo; public: int getInlineCost(CallSite CS); }; RegisterOpt X("inline", "Function Integration/Inlining"); } Pass *llvm::createFunctionInliningPass() { return new SimpleInliner(); } // CountCodeReductionForConstant - Figure out an approximation for how many // instructions will be constant folded if the specified value is constant. // static unsigned CountCodeReductionForConstant(Value *V) { unsigned Reduction = 0; for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) if (isa(*UI)) Reduction += 40; // Eliminating a conditional branch is a big win else if (SwitchInst *SI = dyn_cast(*UI)) // Eliminating a switch is a big win, proportional to the number of edges // deleted. Reduction += (SI->getNumSuccessors()-1) * 40; else if (CallInst *CI = dyn_cast(*UI)) { // Turning an indirect call into a direct call is a BIG win Reduction += CI->getCalledValue() == V ? 500 : 0; } else if (InvokeInst *II = dyn_cast(*UI)) { // Turning an indirect call into a direct call is a BIG win Reduction += II->getCalledValue() == V ? 500 : 0; } else { // Figure out if this instruction will be removed due to simple constant // propagation. Instruction &Inst = cast(**UI); bool AllOperandsConstant = true; for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) if (!isa(Inst.getOperand(i)) && !isa(Inst.getOperand(i)) && Inst.getOperand(i) != V) { AllOperandsConstant = false; break; } if (AllOperandsConstant) { // We will get to remove this instruction... Reduction += 7; // And any other instructions that use it which become constants // themselves. Reduction += CountCodeReductionForConstant(&Inst); } } return Reduction; } // CountCodeReductionForAlloca - Figure out an approximation of how much smaller // the function will be if it is inlined into a context where an argument // becomes an alloca. // static unsigned CountCodeReductionForAlloca(Value *V) { if (!isa(V->getType())) return 0; // Not a pointer unsigned Reduction = 0; for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ Instruction *I = cast(*UI); if (isa(I) || isa(I)) Reduction += 10; else if (GetElementPtrInst *GEP = dyn_cast(I)) { // If the GEP has variable indices, we won't be able to do much with it. for (Instruction::op_iterator I = GEP->op_begin()+1, E = GEP->op_end(); I != E; ++I) if (!isa(*I)) return 0; Reduction += CountCodeReductionForAlloca(GEP)+15; } else { // If there is some other strange instruction, we're not going to be able // to do much if we inline this. return 0; } } return Reduction; } // getInlineCost - The heuristic used to determine if we should inline the // function call or not. // int SimpleInliner::getInlineCost(CallSite CS) { Instruction *TheCall = CS.getInstruction(); Function *Callee = CS.getCalledFunction(); const Function *Caller = TheCall->getParent()->getParent(); // Don't inline a directly recursive call. if (Caller == Callee) return 2000000000; // InlineCost - This value measures how good of an inline candidate this call // site is to inline. A lower inline cost make is more likely for the call to // be inlined. This value may go negative. // int InlineCost = 0; // If there is only one call of the function, and it has internal linkage, // make it almost guaranteed to be inlined. // if (Callee->hasInternalLinkage() && Callee->hasOneUse()) InlineCost -= 30000; // Get information about the callee... FunctionInfo &CalleeFI = CachedFunctionInfo[Callee]; // If we haven't calculated this information yet... if (CalleeFI.NumBlocks == 0) { unsigned NumInsts = 0, NumBlocks = 0; // Look at the size of the callee. Each basic block counts as 20 units, and // each instruction counts as 10. for (Function::const_iterator BB = Callee->begin(), E = Callee->end(); BB != E; ++BB) { NumInsts += BB->size(); NumBlocks++; } CalleeFI.NumBlocks = NumBlocks; CalleeFI.NumInsts = NumInsts; // Check out all of the arguments to the function, figuring out how much // code can be eliminated if one of the arguments is a constant. std::vector &ArgWeights = CalleeFI.ArgumentWeights; for (Function::aiterator I = Callee->abegin(), E = Callee->aend(); I != E; ++I) ArgWeights.push_back(ArgInfo(CountCodeReductionForConstant(I), CountCodeReductionForAlloca(I))); } // Add to the inline quality for properties that make the call valuable to // inline. This includes factors that indicate that the result of inlining // the function will be optimizable. Currently this just looks at arguments // passed into the function. // unsigned ArgNo = 0; for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I, ++ArgNo) { // Each argument passed in has a cost at both the caller and the callee // sides. This favors functions that take many arguments over functions // that take few arguments. InlineCost -= 20; // If this is a function being passed in, it is very likely that we will be // able to turn an indirect function call into a direct function call. if (isa(I)) InlineCost -= 100; // If an alloca is passed in, inlining this function is likely to allow // significant future optimization possibilities (like scalar promotion, and // scalarization), so encourage the inlining of the function. // else if (AllocaInst *AI = dyn_cast(I)) { if (ArgNo < CalleeFI.ArgumentWeights.size()) InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight; // If this is a constant being passed into the function, use the argument // weights calculated for the callee to determine how much will be folded // away with this information. } else if (isa(I) || isa(I)) { if (ArgNo < CalleeFI.ArgumentWeights.size()) InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight; } } // Now that we have considered all of the factors that make the call site more // likely to be inlined, look at factors that make us not want to inline it. // Don't inline into something too big, which would make it bigger. Here, we // count each basic block as a single unit. InlineCost += Caller->size()/20; // Look at the size of the callee. Each basic block counts as 20 units, and // each instruction counts as 5. InlineCost += CalleeFI.NumInsts*5 + CalleeFI.NumBlocks*20; return InlineCost; }