//===-- ConstantVals.cpp - Implement Constant nodes --------------*- C++ -*--=// // // This file implements the Constant* classes... // //===----------------------------------------------------------------------===// #define __STDC_LIMIT_MACROS // Get defs for INT64_MAX and friends... #include "llvm/ConstantVals.h" #include "llvm/DerivedTypes.h" #include "llvm/SymbolTable.h" #include "llvm/GlobalValue.h" #include "llvm/Module.h" #include "llvm/Analysis/SlotCalculator.h" #include "Support/StringExtras.h" #include using std::map; using std::pair; using std::make_pair; ConstantBool *ConstantBool::True = new ConstantBool(true); ConstantBool *ConstantBool::False = new ConstantBool(false); //===----------------------------------------------------------------------===// // Constant Class //===----------------------------------------------------------------------===// // Specialize setName to take care of symbol table majik void Constant::setName(const std::string &Name, SymbolTable *ST) { assert(ST && "Type::setName - Must provide symbol table argument!"); if (Name.size()) ST->insert(Name, this); } // Static constructor to create a '0' constant of arbitrary type... Constant *Constant::getNullConstant(const Type *Ty) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: return ConstantBool::get(false); case Type::SByteTyID: case Type::ShortTyID: case Type::IntTyID: case Type::LongTyID: return ConstantSInt::get(Ty, 0); case Type::UByteTyID: case Type::UShortTyID: case Type::UIntTyID: case Type::ULongTyID: return ConstantUInt::get(Ty, 0); case Type::FloatTyID: case Type::DoubleTyID: return ConstantFP::get(Ty, 0); case Type::PointerTyID: return ConstantPointerNull::get(cast(Ty)); default: return 0; } } void Constant::destroyConstantImpl() { // When a Constant is destroyed, there may be lingering // references to the constant by other constants in the constant pool. These // constants are implicitly dependant on the module that is being deleted, // but they don't know that. Because we only find out when the CPV is // deleted, we must now notify all of our users (that should only be // Constants) that they are, in fact, invalid now and should be deleted. // while (!use_empty()) { Value *V = use_back(); #ifndef NDEBUG // Only in -g mode... if (!isa(V)) { std::cerr << "While deleting: "; dump(); std::cerr << "\nUse still stuck around after Def is destroyed: "; V->dump(); std::cerr << "\n"; } #endif assert(isa(V) && "References remain to ConstantPointerRef!"); Constant *CPV = cast(V); CPV->destroyConstant(); // The constant should remove itself from our use list... assert((use_empty() || use_back() == V) && "Constant not removed!"); } // Value has no outstanding references it is safe to delete it now... delete this; } //===----------------------------------------------------------------------===// // ConstantXXX Classes //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Normal Constructors ConstantBool::ConstantBool(bool V) : Constant(Type::BoolTy) { Val = V; } ConstantInt::ConstantInt(const Type *Ty, uint64_t V) : Constant(Ty) { Val.Unsigned = V; } ConstantSInt::ConstantSInt(const Type *Ty, int64_t V) : ConstantInt(Ty, V) { assert(isValueValidForType(Ty, V) && "Value too large for type!"); } ConstantUInt::ConstantUInt(const Type *Ty, uint64_t V) : ConstantInt(Ty, V) { assert(isValueValidForType(Ty, V) && "Value too large for type!"); } ConstantFP::ConstantFP(const Type *Ty, double V) : Constant(Ty) { assert(isValueValidForType(Ty, V) && "Value too large for type!"); Val = V; } ConstantArray::ConstantArray(const ArrayType *T, const std::vector &V) : Constant(T) { for (unsigned i = 0; i < V.size(); i++) { assert(V[i]->getType() == T->getElementType()); Operands.push_back(Use(V[i], this)); } } ConstantStruct::ConstantStruct(const StructType *T, const std::vector &V) : Constant(T) { const StructType::ElementTypes &ETypes = T->getElementTypes(); for (unsigned i = 0; i < V.size(); i++) { assert(V[i]->getType() == ETypes[i]); Operands.push_back(Use(V[i], this)); } } ConstantPointerRef::ConstantPointerRef(GlobalValue *GV) : ConstantPointer(GV->getType()) { Operands.push_back(Use(GV, this)); } //===----------------------------------------------------------------------===// // getStrValue implementations std::string ConstantBool::getStrValue() const { return Val ? "true" : "false"; } std::string ConstantSInt::getStrValue() const { return itostr(Val.Signed); } std::string ConstantUInt::getStrValue() const { return utostr(Val.Unsigned); } // ConstantFP::getStrValue - We would like to output the FP constant value in // exponential notation, but we cannot do this if doing so will lose precision. // Check here to make sure that we only output it in exponential format if we // can parse the value back and get the same value. // std::string ConstantFP::getStrValue() const { std::string StrVal = ftostr(Val); // Check to make sure that the stringized number is not some string like "Inf" // or NaN, that atof will accept, but the lexer will not. Check that the // string matches the "[-+]?[0-9]" regex. // if ((StrVal[0] >= '0' && StrVal[0] <= '9') || ((StrVal[0] == '-' || StrVal[0] == '+') && (StrVal[0] >= '0' && StrVal[0] <= '9'))) { double TestVal = atof(StrVal.c_str()); // Reparse stringized version! if (TestVal == Val) return StrVal; } // Otherwise we could not reparse it to exactly the same value, so we must // output the string in hexadecimal format! // // Behave nicely in the face of C TBAA rules... see: // http://www.nullstone.com/htmls/category/aliastyp.htm // char *Ptr = (char*)&Val; assert(sizeof(double) == sizeof(uint64_t) && sizeof(double) == 8 && "assuming that double is 64 bits!"); return "0x"+utohexstr(*(uint64_t*)Ptr); } std::string ConstantArray::getStrValue() const { std::string Result; // As a special case, print the array as a string if it is an array of // ubytes or an array of sbytes with positive values. // const Type *ETy = cast(getType())->getElementType(); bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy); if (ETy == Type::SByteTy) { for (unsigned i = 0; i < Operands.size(); ++i) if (ETy == Type::SByteTy && cast(Operands[i])->getValue() < 0) { isString = false; break; } } if (isString) { Result = "c\""; for (unsigned i = 0; i < Operands.size(); ++i) { unsigned char C = (ETy == Type::SByteTy) ? (unsigned char)cast(Operands[i])->getValue() : (unsigned char)cast(Operands[i])->getValue(); if (isprint(C)) { Result += C; } else { Result += '\\'; Result += ( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'); Result += ((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'); } } Result += "\""; } else { Result = "["; if (Operands.size()) { Result += " " + Operands[0]->getType()->getDescription() + " " + cast(Operands[0])->getStrValue(); for (unsigned i = 1; i < Operands.size(); i++) Result += ", " + Operands[i]->getType()->getDescription() + " " + cast(Operands[i])->getStrValue(); } Result += " ]"; } return Result; } std::string ConstantStruct::getStrValue() const { std::string Result = "{"; if (Operands.size()) { Result += " " + Operands[0]->getType()->getDescription() + " " + cast(Operands[0])->getStrValue(); for (unsigned i = 1; i < Operands.size(); i++) Result += ", " + Operands[i]->getType()->getDescription() + " " + cast(Operands[i])->getStrValue(); } return Result + " }"; } std::string ConstantPointerNull::getStrValue() const { return "null"; } std::string ConstantPointerRef::getStrValue() const { const GlobalValue *V = getValue(); if (V->hasName()) return "%" + V->getName(); SlotCalculator *Table = new SlotCalculator(V->getParent(), true); int Slot = Table->getValSlot(V); delete Table; if (Slot >= 0) return std::string(" %") + itostr(Slot); else return ""; } //===----------------------------------------------------------------------===// // classof implementations bool ConstantInt::classof(const Constant *CPV) { return CPV->getType()->isIntegral(); } bool ConstantSInt::classof(const Constant *CPV) { return CPV->getType()->isSigned(); } bool ConstantUInt::classof(const Constant *CPV) { return CPV->getType()->isUnsigned(); } bool ConstantFP::classof(const Constant *CPV) { const Type *Ty = CPV->getType(); return Ty == Type::FloatTy || Ty == Type::DoubleTy; } bool ConstantArray::classof(const Constant *CPV) { return isa(CPV->getType()); } bool ConstantStruct::classof(const Constant *CPV) { return isa(CPV->getType()); } bool ConstantPointer::classof(const Constant *CPV) { return isa(CPV->getType()); } //===----------------------------------------------------------------------===// // isValueValidForType implementations bool ConstantSInt::isValueValidForType(const Type *Ty, int64_t Val) { switch (Ty->getPrimitiveID()) { default: return false; // These can't be represented as integers!!! // Signed types... case Type::SByteTyID: return (Val <= INT8_MAX && Val >= INT8_MIN); case Type::ShortTyID: return (Val <= INT16_MAX && Val >= INT16_MIN); case Type::IntTyID: return (Val <= INT32_MAX && Val >= INT32_MIN); case Type::LongTyID: return true; // This is the largest type... } assert(0 && "WTF?"); return false; } bool ConstantUInt::isValueValidForType(const Type *Ty, uint64_t Val) { switch (Ty->getPrimitiveID()) { default: return false; // These can't be represented as integers!!! // Unsigned types... case Type::UByteTyID: return (Val <= UINT8_MAX); case Type::UShortTyID: return (Val <= UINT16_MAX); case Type::UIntTyID: return (Val <= UINT32_MAX); case Type::ULongTyID: return true; // This is the largest type... } assert(0 && "WTF?"); return false; } bool ConstantFP::isValueValidForType(const Type *Ty, double Val) { switch (Ty->getPrimitiveID()) { default: return false; // These can't be represented as floating point! // TODO: Figure out how to test if a double can be cast to a float! case Type::FloatTyID: /* return (Val <= UINT8_MAX); */ case Type::DoubleTyID: return true; // This is the largest type... } }; //===----------------------------------------------------------------------===// // Hash Function Implementations #if 0 unsigned ConstantSInt::hash(const Type *Ty, int64_t V) { return unsigned(Ty->getPrimitiveID() ^ V); } unsigned ConstantUInt::hash(const Type *Ty, uint64_t V) { return unsigned(Ty->getPrimitiveID() ^ V); } unsigned ConstantFP::hash(const Type *Ty, double V) { return Ty->getPrimitiveID() ^ unsigned(V); } unsigned ConstantArray::hash(const ArrayType *Ty, const std::vector &V) { unsigned Result = (Ty->getUniqueID() << 5) ^ (Ty->getUniqueID() * 7); for (unsigned i = 0; i < V.size(); ++i) Result ^= V[i]->getHash() << (i & 7); return Result; } unsigned ConstantStruct::hash(const StructType *Ty, const std::vector &V) { unsigned Result = (Ty->getUniqueID() << 5) ^ (Ty->getUniqueID() * 7); for (unsigned i = 0; i < V.size(); ++i) Result ^= V[i]->getHash() << (i & 7); return Result; } #endif //===----------------------------------------------------------------------===// // Factory Function Implementation template struct ValueMap { typedef pair ConstHashKey; map Map; inline ConstantClass *get(const Type *Ty, ValType V) { map::iterator I = Map.find(ConstHashKey(Ty, V)); return (I != Map.end()) ? I->second : 0; } inline void add(const Type *Ty, ValType V, ConstantClass *CP) { Map.insert(make_pair(ConstHashKey(Ty, V), CP)); } inline void remove(ConstantClass *CP) { for (map::iterator I = Map.begin(), E = Map.end(); I != E;++I) if (I->second == CP) { Map.erase(I); return; } } }; //---- ConstantUInt::get() and ConstantSInt::get() implementations... // static ValueMap IntConstants; ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) { ConstantSInt *Result = (ConstantSInt*)IntConstants.get(Ty, (uint64_t)V); if (!Result) // If no preexisting value, create one now... IntConstants.add(Ty, V, Result = new ConstantSInt(Ty, V)); return Result; } ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) { ConstantUInt *Result = (ConstantUInt*)IntConstants.get(Ty, V); if (!Result) // If no preexisting value, create one now... IntConstants.add(Ty, V, Result = new ConstantUInt(Ty, V)); return Result; } ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) { assert(V <= 127 && "Can only be used with very small positive constants!"); if (Ty->isSigned()) return ConstantSInt::get(Ty, V); return ConstantUInt::get(Ty, V); } //---- ConstantFP::get() implementation... // static ValueMap FPConstants; ConstantFP *ConstantFP::get(const Type *Ty, double V) { ConstantFP *Result = FPConstants.get(Ty, V); if (!Result) // If no preexisting value, create one now... FPConstants.add(Ty, V, Result = new ConstantFP(Ty, V)); return Result; } //---- ConstantArray::get() implementation... // static ValueMap, ConstantArray> ArrayConstants; ConstantArray *ConstantArray::get(const ArrayType *Ty, const std::vector &V) { ConstantArray *Result = ArrayConstants.get(Ty, V); if (!Result) // If no preexisting value, create one now... ArrayConstants.add(Ty, V, Result = new ConstantArray(Ty, V)); return Result; } // ConstantArray::get(const string&) - Return an array that is initialized to // contain the specified string. A null terminator is added to the specified // string so that it may be used in a natural way... // ConstantArray *ConstantArray::get(const std::string &Str) { std::vector ElementVals; for (unsigned i = 0; i < Str.length(); ++i) ElementVals.push_back(ConstantSInt::get(Type::SByteTy, Str[i])); // Add a null terminator to the string... ElementVals.push_back(ConstantSInt::get(Type::SByteTy, 0)); ArrayType *ATy = ArrayType::get(Type::SByteTy, Str.length()+1); return ConstantArray::get(ATy, ElementVals); } // destroyConstant - Remove the constant from the constant table... // void ConstantArray::destroyConstant() { ArrayConstants.remove(this); destroyConstantImpl(); } //---- ConstantStruct::get() implementation... // static ValueMap, ConstantStruct> StructConstants; ConstantStruct *ConstantStruct::get(const StructType *Ty, const std::vector &V) { ConstantStruct *Result = StructConstants.get(Ty, V); if (!Result) // If no preexisting value, create one now... StructConstants.add(Ty, V, Result = new ConstantStruct(Ty, V)); return Result; } // destroyConstant - Remove the constant from the constant table... // void ConstantStruct::destroyConstant() { StructConstants.remove(this); destroyConstantImpl(); } //---- ConstantPointerNull::get() implementation... // static ValueMap NullPtrConstants; ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) { ConstantPointerNull *Result = NullPtrConstants.get(Ty, 0); if (!Result) // If no preexisting value, create one now... NullPtrConstants.add(Ty, 0, Result = new ConstantPointerNull(Ty)); return Result; } //---- ConstantPointerRef::get() implementation... // ConstantPointerRef *ConstantPointerRef::get(GlobalValue *GV) { assert(GV->getParent() && "Global Value must be attached to a module!"); // The Module handles the pointer reference sharing... return GV->getParent()->getConstantPointerRef(GV); } void ConstantPointerRef::mutateReference(GlobalValue *NewGV) { getValue()->getParent()->mutateConstantPointerRef(getValue(), NewGV); Operands[0] = NewGV; }