//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The implementation for the loop memory dependence that was originally // developed for the loop vectorizer. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/EquivalenceClasses.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Analysis/LoopAnalysisManager.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/OptimizationDiagnosticInfo.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "loop-accesses" static cl::opt VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor)); unsigned VectorizerParams::VectorizationFactor; static cl::opt VectorizationInterleave("force-vector-interleave", cl::Hidden, cl::desc("Sets the vectorization interleave count. " "Zero is autoselect."), cl::location( VectorizerParams::VectorizationInterleave)); unsigned VectorizerParams::VectorizationInterleave; static cl::opt RuntimeMemoryCheckThreshold( "runtime-memory-check-threshold", cl::Hidden, cl::desc("When performing memory disambiguation checks at runtime do not " "generate more than this number of comparisons (default = 8)."), cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); unsigned VectorizerParams::RuntimeMemoryCheckThreshold; /// \brief The maximum iterations used to merge memory checks static cl::opt MemoryCheckMergeThreshold( "memory-check-merge-threshold", cl::Hidden, cl::desc("Maximum number of comparisons done when trying to merge " "runtime memory checks. (default = 100)"), cl::init(100)); /// Maximum SIMD width. const unsigned VectorizerParams::MaxVectorWidth = 64; /// \brief We collect dependences up to this threshold. static cl::opt MaxDependences("max-dependences", cl::Hidden, cl::desc("Maximum number of dependences collected by " "loop-access analysis (default = 100)"), cl::init(100)); /// This enables versioning on the strides of symbolically striding memory /// accesses in code like the following. /// for (i = 0; i < N; ++i) /// A[i * Stride1] += B[i * Stride2] ... /// /// Will be roughly translated to /// if (Stride1 == 1 && Stride2 == 1) { /// for (i = 0; i < N; i+=4) /// A[i:i+3] += ... /// } else /// ... static cl::opt EnableMemAccessVersioning( "enable-mem-access-versioning", cl::init(true), cl::Hidden, cl::desc("Enable symbolic stride memory access versioning")); /// \brief Enable store-to-load forwarding conflict detection. This option can /// be disabled for correctness testing. static cl::opt EnableForwardingConflictDetection( "store-to-load-forwarding-conflict-detection", cl::Hidden, cl::desc("Enable conflict detection in loop-access analysis"), cl::init(true)); bool VectorizerParams::isInterleaveForced() { return ::VectorizationInterleave.getNumOccurrences() > 0; } Value *llvm::stripIntegerCast(Value *V) { if (auto *CI = dyn_cast(V)) if (CI->getOperand(0)->getType()->isIntegerTy()) return CI->getOperand(0); return V; } const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, const ValueToValueMap &PtrToStride, Value *Ptr, Value *OrigPtr) { const SCEV *OrigSCEV = PSE.getSCEV(Ptr); // If there is an entry in the map return the SCEV of the pointer with the // symbolic stride replaced by one. ValueToValueMap::const_iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); if (SI != PtrToStride.end()) { Value *StrideVal = SI->second; // Strip casts. StrideVal = stripIntegerCast(StrideVal); ScalarEvolution *SE = PSE.getSE(); const auto *U = cast(SE->getSCEV(StrideVal)); const auto *CT = static_cast(SE->getOne(StrideVal->getType())); PSE.addPredicate(*SE->getEqualPredicate(U, CT)); auto *Expr = PSE.getSCEV(Ptr); DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr << "\n"); return Expr; } // Otherwise, just return the SCEV of the original pointer. return OrigSCEV; } /// Calculate Start and End points of memory access. /// Let's assume A is the first access and B is a memory access on N-th loop /// iteration. Then B is calculated as: /// B = A + Step*N . /// Step value may be positive or negative. /// N is a calculated back-edge taken count: /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 /// Start and End points are calculated in the following way: /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, /// where SizeOfElt is the size of single memory access in bytes. /// /// There is no conflict when the intervals are disjoint: /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, unsigned ASId, const ValueToValueMap &Strides, PredicatedScalarEvolution &PSE) { // Get the stride replaced scev. const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); ScalarEvolution *SE = PSE.getSE(); const SCEV *ScStart; const SCEV *ScEnd; if (SE->isLoopInvariant(Sc, Lp)) ScStart = ScEnd = Sc; else { const SCEVAddRecExpr *AR = dyn_cast(Sc); assert(AR && "Invalid addrec expression"); const SCEV *Ex = PSE.getBackedgeTakenCount(); ScStart = AR->getStart(); ScEnd = AR->evaluateAtIteration(Ex, *SE); const SCEV *Step = AR->getStepRecurrence(*SE); // For expressions with negative step, the upper bound is ScStart and the // lower bound is ScEnd. if (const auto *CStep = dyn_cast(Step)) { if (CStep->getValue()->isNegative()) std::swap(ScStart, ScEnd); } else { // Fallback case: the step is not constant, but we can still // get the upper and lower bounds of the interval by using min/max // expressions. ScStart = SE->getUMinExpr(ScStart, ScEnd); ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); } // Add the size of the pointed element to ScEnd. unsigned EltSize = Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); } Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); } SmallVector RuntimePointerChecking::generateChecks() const { SmallVector Checks; for (unsigned I = 0; I < CheckingGroups.size(); ++I) { for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; if (needsChecking(CGI, CGJ)) Checks.push_back(std::make_pair(&CGI, &CGJ)); } } return Checks; } void RuntimePointerChecking::generateChecks( MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { assert(Checks.empty() && "Checks is not empty"); groupChecks(DepCands, UseDependencies); Checks = generateChecks(); } bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, const CheckingPtrGroup &N) const { for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) if (needsChecking(M.Members[I], N.Members[J])) return true; return false; } /// Compare \p I and \p J and return the minimum. /// Return nullptr in case we couldn't find an answer. static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, ScalarEvolution *SE) { const SCEV *Diff = SE->getMinusSCEV(J, I); const SCEVConstant *C = dyn_cast(Diff); if (!C) return nullptr; if (C->getValue()->isNegative()) return J; return I; } bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { const SCEV *Start = RtCheck.Pointers[Index].Start; const SCEV *End = RtCheck.Pointers[Index].End; // Compare the starts and ends with the known minimum and maximum // of this set. We need to know how we compare against the min/max // of the set in order to be able to emit memchecks. const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); if (!Min0) return false; const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); if (!Min1) return false; // Update the low bound expression if we've found a new min value. if (Min0 == Start) Low = Start; // Update the high bound expression if we've found a new max value. if (Min1 != End) High = End; Members.push_back(Index); return true; } void RuntimePointerChecking::groupChecks( MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { // We build the groups from dependency candidates equivalence classes // because: // - We know that pointers in the same equivalence class share // the same underlying object and therefore there is a chance // that we can compare pointers // - We wouldn't be able to merge two pointers for which we need // to emit a memcheck. The classes in DepCands are already // conveniently built such that no two pointers in the same // class need checking against each other. // We use the following (greedy) algorithm to construct the groups // For every pointer in the equivalence class: // For each existing group: // - if the difference between this pointer and the min/max bounds // of the group is a constant, then make the pointer part of the // group and update the min/max bounds of that group as required. CheckingGroups.clear(); // If we need to check two pointers to the same underlying object // with a non-constant difference, we shouldn't perform any pointer // grouping with those pointers. This is because we can easily get // into cases where the resulting check would return false, even when // the accesses are safe. // // The following example shows this: // for (i = 0; i < 1000; ++i) // a[5000 + i * m] = a[i] + a[i + 9000] // // Here grouping gives a check of (5000, 5000 + 1000 * m) against // (0, 10000) which is always false. However, if m is 1, there is no // dependence. Not grouping the checks for a[i] and a[i + 9000] allows // us to perform an accurate check in this case. // // The above case requires that we have an UnknownDependence between // accesses to the same underlying object. This cannot happen unless // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies // is also false. In this case we will use the fallback path and create // separate checking groups for all pointers. // If we don't have the dependency partitions, construct a new // checking pointer group for each pointer. This is also required // for correctness, because in this case we can have checking between // pointers to the same underlying object. if (!UseDependencies) { for (unsigned I = 0; I < Pointers.size(); ++I) CheckingGroups.push_back(CheckingPtrGroup(I, *this)); return; } unsigned TotalComparisons = 0; DenseMap PositionMap; for (unsigned Index = 0; Index < Pointers.size(); ++Index) PositionMap[Pointers[Index].PointerValue] = Index; // We need to keep track of what pointers we've already seen so we // don't process them twice. SmallSet Seen; // Go through all equivalence classes, get the "pointer check groups" // and add them to the overall solution. We use the order in which accesses // appear in 'Pointers' to enforce determinism. for (unsigned I = 0; I < Pointers.size(); ++I) { // We've seen this pointer before, and therefore already processed // its equivalence class. if (Seen.count(I)) continue; MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, Pointers[I].IsWritePtr); SmallVector Groups; auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); // Because DepCands is constructed by visiting accesses in the order in // which they appear in alias sets (which is deterministic) and the // iteration order within an equivalence class member is only dependent on // the order in which unions and insertions are performed on the // equivalence class, the iteration order is deterministic. for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); MI != ME; ++MI) { unsigned Pointer = PositionMap[MI->getPointer()]; bool Merged = false; // Mark this pointer as seen. Seen.insert(Pointer); // Go through all the existing sets and see if we can find one // which can include this pointer. for (CheckingPtrGroup &Group : Groups) { // Don't perform more than a certain amount of comparisons. // This should limit the cost of grouping the pointers to something // reasonable. If we do end up hitting this threshold, the algorithm // will create separate groups for all remaining pointers. if (TotalComparisons > MemoryCheckMergeThreshold) break; TotalComparisons++; if (Group.addPointer(Pointer)) { Merged = true; break; } } if (!Merged) // We couldn't add this pointer to any existing set or the threshold // for the number of comparisons has been reached. Create a new group // to hold the current pointer. Groups.push_back(CheckingPtrGroup(Pointer, *this)); } // We've computed the grouped checks for this partition. // Save the results and continue with the next one. std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups)); } } bool RuntimePointerChecking::arePointersInSamePartition( const SmallVectorImpl &PtrToPartition, unsigned PtrIdx1, unsigned PtrIdx2) { return (PtrToPartition[PtrIdx1] != -1 && PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); } bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { const PointerInfo &PointerI = Pointers[I]; const PointerInfo &PointerJ = Pointers[J]; // No need to check if two readonly pointers intersect. if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) return false; // Only need to check pointers between two different dependency sets. if (PointerI.DependencySetId == PointerJ.DependencySetId) return false; // Only need to check pointers in the same alias set. if (PointerI.AliasSetId != PointerJ.AliasSetId) return false; return true; } void RuntimePointerChecking::printChecks( raw_ostream &OS, const SmallVectorImpl &Checks, unsigned Depth) const { unsigned N = 0; for (const auto &Check : Checks) { const auto &First = Check.first->Members, &Second = Check.second->Members; OS.indent(Depth) << "Check " << N++ << ":\n"; OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; for (unsigned K = 0; K < First.size(); ++K) OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; for (unsigned K = 0; K < Second.size(); ++K) OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; } } void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { OS.indent(Depth) << "Run-time memory checks:\n"; printChecks(OS, Checks, Depth); OS.indent(Depth) << "Grouped accesses:\n"; for (unsigned I = 0; I < CheckingGroups.size(); ++I) { const auto &CG = CheckingGroups[I]; OS.indent(Depth + 2) << "Group " << &CG << ":\n"; OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High << ")\n"; for (unsigned J = 0; J < CG.Members.size(); ++J) { OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr << "\n"; } } } namespace { /// \brief Analyses memory accesses in a loop. /// /// Checks whether run time pointer checks are needed and builds sets for data /// dependence checking. class AccessAnalysis { public: /// \brief Read or write access location. typedef PointerIntPair MemAccessInfo; typedef SmallVector MemAccessInfoList; AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI, MemoryDepChecker::DepCandidates &DA, PredicatedScalarEvolution &PSE) : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false), PSE(PSE) {} /// \brief Register a load and whether it is only read from. void addLoad(MemoryLocation &Loc, bool IsReadOnly) { Value *Ptr = const_cast(Loc.Ptr); AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); Accesses.insert(MemAccessInfo(Ptr, false)); if (IsReadOnly) ReadOnlyPtr.insert(Ptr); } /// \brief Register a store. void addStore(MemoryLocation &Loc) { Value *Ptr = const_cast(Loc.Ptr); AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags); Accesses.insert(MemAccessInfo(Ptr, true)); } /// \brief Check whether we can check the pointers at runtime for /// non-intersection. /// /// Returns true if we need no check or if we do and we can generate them /// (i.e. the pointers have computable bounds). bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, Loop *TheLoop, const ValueToValueMap &Strides, bool ShouldCheckWrap = false); /// \brief Goes over all memory accesses, checks whether a RT check is needed /// and builds sets of dependent accesses. void buildDependenceSets() { processMemAccesses(); } /// \brief Initial processing of memory accesses determined that we need to /// perform dependency checking. /// /// Note that this can later be cleared if we retry memcheck analysis without /// dependency checking (i.e. ShouldRetryWithRuntimeCheck). bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } /// We decided that no dependence analysis would be used. Reset the state. void resetDepChecks(MemoryDepChecker &DepChecker) { CheckDeps.clear(); DepChecker.clearDependences(); } MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } private: typedef SetVector PtrAccessSet; /// \brief Go over all memory access and check whether runtime pointer checks /// are needed and build sets of dependency check candidates. void processMemAccesses(); /// Set of all accesses. PtrAccessSet Accesses; const DataLayout &DL; /// List of accesses that need a further dependence check. MemAccessInfoList CheckDeps; /// Set of pointers that are read only. SmallPtrSet ReadOnlyPtr; /// An alias set tracker to partition the access set by underlying object and //intrinsic property (such as TBAA metadata). AliasSetTracker AST; LoopInfo *LI; /// Sets of potentially dependent accesses - members of one set share an /// underlying pointer. The set "CheckDeps" identfies which sets really need a /// dependence check. MemoryDepChecker::DepCandidates &DepCands; /// \brief Initial processing of memory accesses determined that we may need /// to add memchecks. Perform the analysis to determine the necessary checks. /// /// Note that, this is different from isDependencyCheckNeeded. When we retry /// memcheck analysis without dependency checking /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared /// while this remains set if we have potentially dependent accesses. bool IsRTCheckAnalysisNeeded; /// The SCEV predicate containing all the SCEV-related assumptions. PredicatedScalarEvolution &PSE; }; } // end anonymous namespace /// \brief Check whether a pointer can participate in a runtime bounds check. static bool hasComputableBounds(PredicatedScalarEvolution &PSE, const ValueToValueMap &Strides, Value *Ptr, Loop *L) { const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); // The bounds for loop-invariant pointer is trivial. if (PSE.getSE()->isLoopInvariant(PtrScev, L)) return true; const SCEVAddRecExpr *AR = dyn_cast(PtrScev); if (!AR) return false; return AR->isAffine(); } /// \brief Check whether a pointer address cannot wrap. static bool isNoWrap(PredicatedScalarEvolution &PSE, const ValueToValueMap &Strides, Value *Ptr, Loop *L) { const SCEV *PtrScev = PSE.getSCEV(Ptr); if (PSE.getSE()->isLoopInvariant(PtrScev, L)) return true; int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); return Stride == 1; } bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, Loop *TheLoop, const ValueToValueMap &StridesMap, bool ShouldCheckWrap) { // Find pointers with computable bounds. We are going to use this information // to place a runtime bound check. bool CanDoRT = true; bool NeedRTCheck = false; if (!IsRTCheckAnalysisNeeded) return true; bool IsDepCheckNeeded = isDependencyCheckNeeded(); // We assign a consecutive id to access from different alias sets. // Accesses between different groups doesn't need to be checked. unsigned ASId = 1; for (auto &AS : AST) { int NumReadPtrChecks = 0; int NumWritePtrChecks = 0; // We assign consecutive id to access from different dependence sets. // Accesses within the same set don't need a runtime check. unsigned RunningDepId = 1; DenseMap DepSetId; for (auto A : AS) { Value *Ptr = A.getValue(); bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); MemAccessInfo Access(Ptr, IsWrite); if (IsWrite) ++NumWritePtrChecks; else ++NumReadPtrChecks; if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) && // When we run after a failing dependency check we have to make sure // we don't have wrapping pointers. (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) { // The id of the dependence set. unsigned DepId; if (IsDepCheckNeeded) { Value *Leader = DepCands.getLeaderValue(Access).getPointer(); unsigned &LeaderId = DepSetId[Leader]; if (!LeaderId) LeaderId = RunningDepId++; DepId = LeaderId; } else // Each access has its own dependence set. DepId = RunningDepId++; RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); } else { DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); CanDoRT = false; } } // If we have at least two writes or one write and a read then we need to // check them. But there is no need to checks if there is only one // dependence set for this alias set. // // Note that this function computes CanDoRT and NeedRTCheck independently. // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer // for which we couldn't find the bounds but we don't actually need to emit // any checks so it does not matter. if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2)) NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1)); ++ASId; } // If the pointers that we would use for the bounds comparison have different // address spaces, assume the values aren't directly comparable, so we can't // use them for the runtime check. We also have to assume they could // overlap. In the future there should be metadata for whether address spaces // are disjoint. unsigned NumPointers = RtCheck.Pointers.size(); for (unsigned i = 0; i < NumPointers; ++i) { for (unsigned j = i + 1; j < NumPointers; ++j) { // Only need to check pointers between two different dependency sets. if (RtCheck.Pointers[i].DependencySetId == RtCheck.Pointers[j].DependencySetId) continue; // Only need to check pointers in the same alias set. if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) continue; Value *PtrI = RtCheck.Pointers[i].PointerValue; Value *PtrJ = RtCheck.Pointers[j].PointerValue; unsigned ASi = PtrI->getType()->getPointerAddressSpace(); unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); if (ASi != ASj) { DEBUG(dbgs() << "LAA: Runtime check would require comparison between" " different address spaces\n"); return false; } } } if (NeedRTCheck && CanDoRT) RtCheck.generateChecks(DepCands, IsDepCheckNeeded); DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() << " pointer comparisons.\n"); RtCheck.Need = NeedRTCheck; bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; if (!CanDoRTIfNeeded) RtCheck.reset(); return CanDoRTIfNeeded; } void AccessAnalysis::processMemAccesses() { // We process the set twice: first we process read-write pointers, last we // process read-only pointers. This allows us to skip dependence tests for // read-only pointers. DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); DEBUG(dbgs() << " AST: "; AST.dump()); DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); DEBUG({ for (auto A : Accesses) dbgs() << "\t" << *A.getPointer() << " (" << (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? "read-only" : "read")) << ")\n"; }); // The AliasSetTracker has nicely partitioned our pointers by metadata // compatibility and potential for underlying-object overlap. As a result, we // only need to check for potential pointer dependencies within each alias // set. for (auto &AS : AST) { // Note that both the alias-set tracker and the alias sets themselves used // linked lists internally and so the iteration order here is deterministic // (matching the original instruction order within each set). bool SetHasWrite = false; // Map of pointers to last access encountered. typedef DenseMap UnderlyingObjToAccessMap; UnderlyingObjToAccessMap ObjToLastAccess; // Set of access to check after all writes have been processed. PtrAccessSet DeferredAccesses; // Iterate over each alias set twice, once to process read/write pointers, // and then to process read-only pointers. for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { bool UseDeferred = SetIteration > 0; PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; for (auto AV : AS) { Value *Ptr = AV.getValue(); // For a single memory access in AliasSetTracker, Accesses may contain // both read and write, and they both need to be handled for CheckDeps. for (auto AC : S) { if (AC.getPointer() != Ptr) continue; bool IsWrite = AC.getInt(); // If we're using the deferred access set, then it contains only // reads. bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; if (UseDeferred && !IsReadOnlyPtr) continue; // Otherwise, the pointer must be in the PtrAccessSet, either as a // read or a write. assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || S.count(MemAccessInfo(Ptr, false))) && "Alias-set pointer not in the access set?"); MemAccessInfo Access(Ptr, IsWrite); DepCands.insert(Access); // Memorize read-only pointers for later processing and skip them in // the first round (they need to be checked after we have seen all // write pointers). Note: we also mark pointer that are not // consecutive as "read-only" pointers (so that we check // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". if (!UseDeferred && IsReadOnlyPtr) { DeferredAccesses.insert(Access); continue; } // If this is a write - check other reads and writes for conflicts. If // this is a read only check other writes for conflicts (but only if // there is no other write to the ptr - this is an optimization to // catch "a[i] = a[i] + " without having to do a dependence check). if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { CheckDeps.push_back(Access); IsRTCheckAnalysisNeeded = true; } if (IsWrite) SetHasWrite = true; // Create sets of pointers connected by a shared alias set and // underlying object. typedef SmallVector ValueVector; ValueVector TempObjects; GetUnderlyingObjects(Ptr, TempObjects, DL, LI); DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n"); for (Value *UnderlyingObj : TempObjects) { // nullptr never alias, don't join sets for pointer that have "null" // in their UnderlyingObjects list. if (isa(UnderlyingObj)) continue; UnderlyingObjToAccessMap::iterator Prev = ObjToLastAccess.find(UnderlyingObj); if (Prev != ObjToLastAccess.end()) DepCands.unionSets(Access, Prev->second); ObjToLastAccess[UnderlyingObj] = Access; DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); } } } } } } static bool isInBoundsGep(Value *Ptr) { if (GetElementPtrInst *GEP = dyn_cast(Ptr)) return GEP->isInBounds(); return false; } /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, /// i.e. monotonically increasing/decreasing. static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, PredicatedScalarEvolution &PSE, const Loop *L) { // FIXME: This should probably only return true for NUW. if (AR->getNoWrapFlags(SCEV::NoWrapMask)) return true; // Scalar evolution does not propagate the non-wrapping flags to values that // are derived from a non-wrapping induction variable because non-wrapping // could be flow-sensitive. // // Look through the potentially overflowing instruction to try to prove // non-wrapping for the *specific* value of Ptr. // The arithmetic implied by an inbounds GEP can't overflow. auto *GEP = dyn_cast(Ptr); if (!GEP || !GEP->isInBounds()) return false; // Make sure there is only one non-const index and analyze that. Value *NonConstIndex = nullptr; for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) if (!isa(Index)) { if (NonConstIndex) return false; NonConstIndex = Index; } if (!NonConstIndex) // The recurrence is on the pointer, ignore for now. return false; // The index in GEP is signed. It is non-wrapping if it's derived from a NSW // AddRec using a NSW operation. if (auto *OBO = dyn_cast(NonConstIndex)) if (OBO->hasNoSignedWrap() && // Assume constant for other the operand so that the AddRec can be // easily found. isa(OBO->getOperand(1))) { auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); if (auto *OpAR = dyn_cast(OpScev)) return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); } return false; } /// \brief Check whether the access through \p Ptr has a constant stride. int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, const Loop *Lp, const ValueToValueMap &StridesMap, bool Assume, bool ShouldCheckWrap) { Type *Ty = Ptr->getType(); assert(Ty->isPointerTy() && "Unexpected non-ptr"); // Make sure that the pointer does not point to aggregate types. auto *PtrTy = cast(Ty); if (PtrTy->getElementType()->isAggregateType()) { DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr << "\n"); return 0; } const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); const SCEVAddRecExpr *AR = dyn_cast(PtrScev); if (Assume && !AR) AR = PSE.getAsAddRec(Ptr); if (!AR) { DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr << " SCEV: " << *PtrScev << "\n"); return 0; } // The accesss function must stride over the innermost loop. if (Lp != AR->getLoop()) { DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " << *Ptr << " SCEV: " << *AR << "\n"); return 0; } // The address calculation must not wrap. Otherwise, a dependence could be // inverted. // An inbounds getelementptr that is a AddRec with a unit stride // cannot wrap per definition. The unit stride requirement is checked later. // An getelementptr without an inbounds attribute and unit stride would have // to access the pointer value "0" which is undefined behavior in address // space 0, therefore we can also vectorize this case. bool IsInBoundsGEP = isInBoundsGep(Ptr); bool IsNoWrapAddRec = !ShouldCheckWrap || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || isNoWrapAddRec(Ptr, AR, PSE, Lp); bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { if (Assume) { PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); IsNoWrapAddRec = true; DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" << "LAA: Pointer: " << *Ptr << "\n" << "LAA: SCEV: " << *AR << "\n" << "LAA: Added an overflow assumption\n"); } else { DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " << *Ptr << " SCEV: " << *AR << "\n"); return 0; } } // Check the step is constant. const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); // Calculate the pointer stride and check if it is constant. const SCEVConstant *C = dyn_cast(Step); if (!C) { DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr << " SCEV: " << *AR << "\n"); return 0; } auto &DL = Lp->getHeader()->getModule()->getDataLayout(); int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); const APInt &APStepVal = C->getAPInt(); // Huge step value - give up. if (APStepVal.getBitWidth() > 64) return 0; int64_t StepVal = APStepVal.getSExtValue(); // Strided access. int64_t Stride = StepVal / Size; int64_t Rem = StepVal % Size; if (Rem) return 0; // If the SCEV could wrap but we have an inbounds gep with a unit stride we // know we can't "wrap around the address space". In case of address space // zero we know that this won't happen without triggering undefined behavior. if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && Stride != 1 && Stride != -1) { if (Assume) { // We can avoid this case by adding a run-time check. DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " << "inbouds or in address space 0 may wrap:\n" << "LAA: Pointer: " << *Ptr << "\n" << "LAA: SCEV: " << *AR << "\n" << "LAA: Added an overflow assumption\n"); PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); } else return 0; } return Stride; } /// Take the pointer operand from the Load/Store instruction. /// Returns NULL if this is not a valid Load/Store instruction. static Value *getPointerOperand(Value *I) { if (auto *LI = dyn_cast(I)) return LI->getPointerOperand(); if (auto *SI = dyn_cast(I)) return SI->getPointerOperand(); return nullptr; } /// Take the address space operand from the Load/Store instruction. /// Returns -1 if this is not a valid Load/Store instruction. static unsigned getAddressSpaceOperand(Value *I) { if (LoadInst *L = dyn_cast(I)) return L->getPointerAddressSpace(); if (StoreInst *S = dyn_cast(I)) return S->getPointerAddressSpace(); return -1; } /// Returns true if the memory operations \p A and \p B are consecutive. bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, ScalarEvolution &SE, bool CheckType) { Value *PtrA = getPointerOperand(A); Value *PtrB = getPointerOperand(B); unsigned ASA = getAddressSpaceOperand(A); unsigned ASB = getAddressSpaceOperand(B); // Check that the address spaces match and that the pointers are valid. if (!PtrA || !PtrB || (ASA != ASB)) return false; // Make sure that A and B are different pointers. if (PtrA == PtrB) return false; // Make sure that A and B have the same type if required. if (CheckType && PtrA->getType() != PtrB->getType()) return false; unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); Type *Ty = cast(PtrA->getType())->getElementType(); APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); // OffsetDelta = OffsetB - OffsetA; const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); const SCEVConstant *OffsetDeltaC = dyn_cast(OffsetDeltaSCEV); const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); // Check if they are based on the same pointer. That makes the offsets // sufficient. if (PtrA == PtrB) return OffsetDelta == Size; // Compute the necessary base pointer delta to have the necessary final delta // equal to the size. // BaseDelta = Size - OffsetDelta; const SCEV *SizeSCEV = SE.getConstant(Size); const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); // Otherwise compute the distance with SCEV between the base pointers. const SCEV *PtrSCEVA = SE.getSCEV(PtrA); const SCEV *PtrSCEVB = SE.getSCEV(PtrB); const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); return X == PtrSCEVB; } bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { switch (Type) { case NoDep: case Forward: case BackwardVectorizable: return true; case Unknown: case ForwardButPreventsForwarding: case Backward: case BackwardVectorizableButPreventsForwarding: return false; } llvm_unreachable("unexpected DepType!"); } bool MemoryDepChecker::Dependence::isBackward() const { switch (Type) { case NoDep: case Forward: case ForwardButPreventsForwarding: case Unknown: return false; case BackwardVectorizable: case Backward: case BackwardVectorizableButPreventsForwarding: return true; } llvm_unreachable("unexpected DepType!"); } bool MemoryDepChecker::Dependence::isPossiblyBackward() const { return isBackward() || Type == Unknown; } bool MemoryDepChecker::Dependence::isForward() const { switch (Type) { case Forward: case ForwardButPreventsForwarding: return true; case NoDep: case Unknown: case BackwardVectorizable: case Backward: case BackwardVectorizableButPreventsForwarding: return false; } llvm_unreachable("unexpected DepType!"); } bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize) { // If loads occur at a distance that is not a multiple of a feasible vector // factor store-load forwarding does not take place. // Positive dependences might cause troubles because vectorizing them might // prevent store-load forwarding making vectorized code run a lot slower. // a[i] = a[i-3] ^ a[i-8]; // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and // hence on your typical architecture store-load forwarding does not take // place. Vectorizing in such cases does not make sense. // Store-load forwarding distance. // After this many iterations store-to-load forwarding conflicts should not // cause any slowdowns. const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; // Maximum vector factor. uint64_t MaxVFWithoutSLForwardIssues = std::min( VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); // Compute the smallest VF at which the store and load would be misaligned. for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; VF *= 2) { // If the number of vector iteration between the store and the load are // small we could incur conflicts. if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { MaxVFWithoutSLForwardIssues = (VF >>= 1); break; } } if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { DEBUG(dbgs() << "LAA: Distance " << Distance << " that could cause a store-load forwarding conflict\n"); return true; } if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && MaxVFWithoutSLForwardIssues != VectorizerParams::MaxVectorWidth * TypeByteSize) MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; return false; } /// Given a non-constant (unknown) dependence-distance \p Dist between two /// memory accesses, that have the same stride whose absolute value is given /// in \p Stride, and that have the same type size \p TypeByteSize, /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is /// possible to prove statically that the dependence distance is larger /// than the range that the accesses will travel through the execution of /// the loop. If so, return true; false otherwise. This is useful for /// example in loops such as the following (PR31098): /// for (i = 0; i < D; ++i) { /// = out[i]; /// out[i+D] = /// } static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, const SCEV &BackedgeTakenCount, const SCEV &Dist, uint64_t Stride, uint64_t TypeByteSize) { // If we can prove that // (**) |Dist| > BackedgeTakenCount * Step // where Step is the absolute stride of the memory accesses in bytes, // then there is no dependence. // // Ratioanle: // We basically want to check if the absolute distance (|Dist/Step|) // is >= the loop iteration count (or > BackedgeTakenCount). // This is equivalent to the Strong SIV Test (Practical Dependence Testing, // Section 4.2.1); Note, that for vectorization it is sufficient to prove // that the dependence distance is >= VF; This is checked elsewhere. // But in some cases we can prune unknown dependence distances early, and // even before selecting the VF, and without a runtime test, by comparing // the distance against the loop iteration count. Since the vectorized code // will be executed only if LoopCount >= VF, proving distance >= LoopCount // also guarantees that distance >= VF. // const uint64_t ByteStride = Stride * TypeByteSize; const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); const SCEV *CastedDist = &Dist; const SCEV *CastedProduct = Product; uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); // The dependence distance can be positive/negative, so we sign extend Dist; // The multiplication of the absolute stride in bytes and the // backdgeTakenCount is non-negative, so we zero extend Product. if (DistTypeSize > ProductTypeSize) CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); else CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); // Is Dist - (BackedgeTakenCount * Step) > 0 ? // (If so, then we have proven (**) because |Dist| >= Dist) const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); if (SE.isKnownPositive(Minus)) return true; // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? // (If so, then we have proven (**) because |Dist| >= -1*Dist) const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); Minus = SE.getMinusSCEV(NegDist, CastedProduct); if (SE.isKnownPositive(Minus)) return true; return false; } /// \brief Check the dependence for two accesses with the same stride \p Stride. /// \p Distance is the positive distance and \p TypeByteSize is type size in /// bytes. /// /// \returns true if they are independent. static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, uint64_t TypeByteSize) { assert(Stride > 1 && "The stride must be greater than 1"); assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); assert(Distance > 0 && "The distance must be non-zero"); // Skip if the distance is not multiple of type byte size. if (Distance % TypeByteSize) return false; uint64_t ScaledDist = Distance / TypeByteSize; // No dependence if the scaled distance is not multiple of the stride. // E.g. // for (i = 0; i < 1024 ; i += 4) // A[i+2] = A[i] + 1; // // Two accesses in memory (scaled distance is 2, stride is 4): // | A[0] | | | | A[4] | | | | // | | | A[2] | | | | A[6] | | // // E.g. // for (i = 0; i < 1024 ; i += 3) // A[i+4] = A[i] + 1; // // Two accesses in memory (scaled distance is 4, stride is 3): // | A[0] | | | A[3] | | | A[6] | | | // | | | | | A[4] | | | A[7] | | return ScaledDist % Stride; } MemoryDepChecker::Dependence::DepType MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, const MemAccessInfo &B, unsigned BIdx, const ValueToValueMap &Strides) { assert (AIdx < BIdx && "Must pass arguments in program order"); Value *APtr = A.getPointer(); Value *BPtr = B.getPointer(); bool AIsWrite = A.getInt(); bool BIsWrite = B.getInt(); // Two reads are independent. if (!AIsWrite && !BIsWrite) return Dependence::NoDep; // We cannot check pointers in different address spaces. if (APtr->getType()->getPointerAddressSpace() != BPtr->getType()->getPointerAddressSpace()) return Dependence::Unknown; int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); const SCEV *Src = PSE.getSCEV(APtr); const SCEV *Sink = PSE.getSCEV(BPtr); // If the induction step is negative we have to invert source and sink of the // dependence. if (StrideAPtr < 0) { std::swap(APtr, BPtr); std::swap(Src, Sink); std::swap(AIsWrite, BIsWrite); std::swap(AIdx, BIdx); std::swap(StrideAPtr, StrideBPtr); } const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink << "(Induction step: " << StrideAPtr << ")\n"); DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " << *InstMap[BIdx] << ": " << *Dist << "\n"); // Need accesses with constant stride. We don't want to vectorize // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in // the address space. if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ DEBUG(dbgs() << "Pointer access with non-constant stride\n"); return Dependence::Unknown; } Type *ATy = APtr->getType()->getPointerElementType(); Type *BTy = BPtr->getType()->getPointerElementType(); auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); uint64_t Stride = std::abs(StrideAPtr); const SCEVConstant *C = dyn_cast(Dist); if (!C) { if (TypeByteSize == DL.getTypeAllocSize(BTy) && isSafeDependenceDistance(DL, *(PSE.getSE()), *(PSE.getBackedgeTakenCount()), *Dist, Stride, TypeByteSize)) return Dependence::NoDep; DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); ShouldRetryWithRuntimeCheck = true; return Dependence::Unknown; } const APInt &Val = C->getAPInt(); int64_t Distance = Val.getSExtValue(); // Attempt to prove strided accesses independent. if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); return Dependence::NoDep; } // Negative distances are not plausible dependencies. if (Val.isNegative()) { bool IsTrueDataDependence = (AIsWrite && !BIsWrite); if (IsTrueDataDependence && EnableForwardingConflictDetection && (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || ATy != BTy)) { DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); return Dependence::ForwardButPreventsForwarding; } DEBUG(dbgs() << "LAA: Dependence is negative\n"); return Dependence::Forward; } // Write to the same location with the same size. // Could be improved to assert type sizes are the same (i32 == float, etc). if (Val == 0) { if (ATy == BTy) return Dependence::Forward; DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n"); return Dependence::Unknown; } assert(Val.isStrictlyPositive() && "Expect a positive value"); if (ATy != BTy) { DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with different types\n"); return Dependence::Unknown; } // Bail out early if passed-in parameters make vectorization not feasible. unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? VectorizerParams::VectorizationFactor : 1); unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? VectorizerParams::VectorizationInterleave : 1); // The minimum number of iterations for a vectorized/unrolled version. unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); // It's not vectorizable if the distance is smaller than the minimum distance // needed for a vectroized/unrolled version. Vectorizing one iteration in // front needs TypeByteSize * Stride. Vectorizing the last iteration needs // TypeByteSize (No need to plus the last gap distance). // // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. // foo(int *A) { // int *B = (int *)((char *)A + 14); // for (i = 0 ; i < 1024 ; i += 2) // B[i] = A[i] + 1; // } // // Two accesses in memory (stride is 2): // | A[0] | | A[2] | | A[4] | | A[6] | | // | B[0] | | B[2] | | B[4] | // // Distance needs for vectorizing iterations except the last iteration: // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. // // If MinNumIter is 2, it is vectorizable as the minimum distance needed is // 12, which is less than distance. // // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), // the minimum distance needed is 28, which is greater than distance. It is // not safe to do vectorization. uint64_t MinDistanceNeeded = TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; if (MinDistanceNeeded > static_cast(Distance)) { DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance << '\n'); return Dependence::Backward; } // Unsafe if the minimum distance needed is greater than max safe distance. if (MinDistanceNeeded > MaxSafeDepDistBytes) { DEBUG(dbgs() << "LAA: Failure because it needs at least " << MinDistanceNeeded << " size in bytes"); return Dependence::Backward; } // Positive distance bigger than max vectorization factor. // FIXME: Should use max factor instead of max distance in bytes, which could // not handle different types. // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. // void foo (int *A, char *B) { // for (unsigned i = 0; i < 1024; i++) { // A[i+2] = A[i] + 1; // B[i+2] = B[i] + 1; // } // } // // This case is currently unsafe according to the max safe distance. If we // analyze the two accesses on array B, the max safe dependence distance // is 2. Then we analyze the accesses on array A, the minimum distance needed // is 8, which is less than 2 and forbidden vectorization, But actually // both A and B could be vectorized by 2 iterations. MaxSafeDepDistBytes = std::min(static_cast(Distance), MaxSafeDepDistBytes); bool IsTrueDataDependence = (!AIsWrite && BIsWrite); if (IsTrueDataDependence && EnableForwardingConflictDetection && couldPreventStoreLoadForward(Distance, TypeByteSize)) return Dependence::BackwardVectorizableButPreventsForwarding; DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() << " with max VF = " << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n'); return Dependence::BackwardVectorizable; } bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps, const ValueToValueMap &Strides) { MaxSafeDepDistBytes = -1; SmallPtrSet Visited; for (MemAccessInfo CurAccess : CheckDeps) { if (Visited.count(CurAccess)) continue; // Get the relevant memory access set. EquivalenceClasses::iterator I = AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); // Check accesses within this set. EquivalenceClasses::member_iterator AI = AccessSets.member_begin(I); EquivalenceClasses::member_iterator AE = AccessSets.member_end(); // Check every access pair. while (AI != AE) { Visited.insert(*AI); EquivalenceClasses::member_iterator OI = std::next(AI); while (OI != AE) { // Check every accessing instruction pair in program order. for (std::vector::iterator I1 = Accesses[*AI].begin(), I1E = Accesses[*AI].end(); I1 != I1E; ++I1) for (std::vector::iterator I2 = Accesses[*OI].begin(), I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { auto A = std::make_pair(&*AI, *I1); auto B = std::make_pair(&*OI, *I2); assert(*I1 != *I2); if (*I1 > *I2) std::swap(A, B); Dependence::DepType Type = isDependent(*A.first, A.second, *B.first, B.second, Strides); SafeForVectorization &= Dependence::isSafeForVectorization(Type); // Gather dependences unless we accumulated MaxDependences // dependences. In that case return as soon as we find the first // unsafe dependence. This puts a limit on this quadratic // algorithm. if (RecordDependences) { if (Type != Dependence::NoDep) Dependences.push_back(Dependence(A.second, B.second, Type)); if (Dependences.size() >= MaxDependences) { RecordDependences = false; Dependences.clear(); DEBUG(dbgs() << "Too many dependences, stopped recording\n"); } } if (!RecordDependences && !SafeForVectorization) return false; } ++OI; } AI++; } } DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); return SafeForVectorization; } SmallVector MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { MemAccessInfo Access(Ptr, isWrite); auto &IndexVector = Accesses.find(Access)->second; SmallVector Insts; transform(IndexVector, std::back_inserter(Insts), [&](unsigned Idx) { return this->InstMap[Idx]; }); return Insts; } const char *MemoryDepChecker::Dependence::DepName[] = { "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; void MemoryDepChecker::Dependence::print( raw_ostream &OS, unsigned Depth, const SmallVectorImpl &Instrs) const { OS.indent(Depth) << DepName[Type] << ":\n"; OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; } bool LoopAccessInfo::canAnalyzeLoop() { // We need to have a loop header. DEBUG(dbgs() << "LAA: Found a loop in " << TheLoop->getHeader()->getParent()->getName() << ": " << TheLoop->getHeader()->getName() << '\n'); // We can only analyze innermost loops. if (!TheLoop->empty()) { DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; return false; } // We must have a single backedge. if (TheLoop->getNumBackEdges() != 1) { DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); recordAnalysis("CFGNotUnderstood") << "loop control flow is not understood by analyzer"; return false; } // We must have a single exiting block. if (!TheLoop->getExitingBlock()) { DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); recordAnalysis("CFGNotUnderstood") << "loop control flow is not understood by analyzer"; return false; } // We only handle bottom-tested loops, i.e. loop in which the condition is // checked at the end of each iteration. With that we can assume that all // instructions in the loop are executed the same number of times. if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n"); recordAnalysis("CFGNotUnderstood") << "loop control flow is not understood by analyzer"; return false; } // ScalarEvolution needs to be able to find the exit count. const SCEV *ExitCount = PSE->getBackedgeTakenCount(); if (ExitCount == PSE->getSE()->getCouldNotCompute()) { recordAnalysis("CantComputeNumberOfIterations") << "could not determine number of loop iterations"; DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); return false; } return true; } void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, const TargetLibraryInfo *TLI, DominatorTree *DT) { typedef SmallPtrSet ValueSet; // Holds the Load and Store instructions. SmallVector Loads; SmallVector Stores; // Holds all the different accesses in the loop. unsigned NumReads = 0; unsigned NumReadWrites = 0; PtrRtChecking->Pointers.clear(); PtrRtChecking->Need = false; const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); // For each block. for (BasicBlock *BB : TheLoop->blocks()) { // Scan the BB and collect legal loads and stores. for (Instruction &I : *BB) { // If this is a load, save it. If this instruction can read from memory // but is not a load, then we quit. Notice that we don't handle function // calls that read or write. if (I.mayReadFromMemory()) { // Many math library functions read the rounding mode. We will only // vectorize a loop if it contains known function calls that don't set // the flag. Therefore, it is safe to ignore this read from memory. auto *Call = dyn_cast(&I); if (Call && getVectorIntrinsicIDForCall(Call, TLI)) continue; // If the function has an explicit vectorized counterpart, we can safely // assume that it can be vectorized. if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) continue; auto *Ld = dyn_cast(&I); if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { recordAnalysis("NonSimpleLoad", Ld) << "read with atomic ordering or volatile read"; DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); CanVecMem = false; return; } NumLoads++; Loads.push_back(Ld); DepChecker->addAccess(Ld); if (EnableMemAccessVersioning) collectStridedAccess(Ld); continue; } // Save 'store' instructions. Abort if other instructions write to memory. if (I.mayWriteToMemory()) { auto *St = dyn_cast(&I); if (!St) { recordAnalysis("CantVectorizeInstruction", St) << "instruction cannot be vectorized"; CanVecMem = false; return; } if (!St->isSimple() && !IsAnnotatedParallel) { recordAnalysis("NonSimpleStore", St) << "write with atomic ordering or volatile write"; DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); CanVecMem = false; return; } NumStores++; Stores.push_back(St); DepChecker->addAccess(St); if (EnableMemAccessVersioning) collectStridedAccess(St); } } // Next instr. } // Next block. // Now we have two lists that hold the loads and the stores. // Next, we find the pointers that they use. // Check if we see any stores. If there are no stores, then we don't // care if the pointers are *restrict*. if (!Stores.size()) { DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); CanVecMem = true; return; } MemoryDepChecker::DepCandidates DependentAccesses; AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), AA, LI, DependentAccesses, *PSE); // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects // multiple times on the same object. If the ptr is accessed twice, once // for read and once for write, it will only appear once (on the write // list). This is okay, since we are going to check for conflicts between // writes and between reads and writes, but not between reads and reads. ValueSet Seen; for (StoreInst *ST : Stores) { Value *Ptr = ST->getPointerOperand(); // Check for store to loop invariant address. StoreToLoopInvariantAddress |= isUniform(Ptr); // If we did *not* see this pointer before, insert it to the read-write // list. At this phase it is only a 'write' list. if (Seen.insert(Ptr).second) { ++NumReadWrites; MemoryLocation Loc = MemoryLocation::get(ST); // The TBAA metadata could have a control dependency on the predication // condition, so we cannot rely on it when determining whether or not we // need runtime pointer checks. if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) Loc.AATags.TBAA = nullptr; Accesses.addStore(Loc); } } if (IsAnnotatedParallel) { DEBUG(dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " << "checks.\n"); CanVecMem = true; return; } for (LoadInst *LD : Loads) { Value *Ptr = LD->getPointerOperand(); // If we did *not* see this pointer before, insert it to the // read list. If we *did* see it before, then it is already in // the read-write list. This allows us to vectorize expressions // such as A[i] += x; Because the address of A[i] is a read-write // pointer. This only works if the index of A[i] is consecutive. // If the address of i is unknown (for example A[B[i]]) then we may // read a few words, modify, and write a few words, and some of the // words may be written to the same address. bool IsReadOnlyPtr = false; if (Seen.insert(Ptr).second || !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { ++NumReads; IsReadOnlyPtr = true; } MemoryLocation Loc = MemoryLocation::get(LD); // The TBAA metadata could have a control dependency on the predication // condition, so we cannot rely on it when determining whether or not we // need runtime pointer checks. if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) Loc.AATags.TBAA = nullptr; Accesses.addLoad(Loc, IsReadOnlyPtr); } // If we write (or read-write) to a single destination and there are no // other reads in this loop then is it safe to vectorize. if (NumReadWrites == 1 && NumReads == 0) { DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); CanVecMem = true; return; } // Build dependence sets and check whether we need a runtime pointer bounds // check. Accesses.buildDependenceSets(); // Find pointers with computable bounds. We are going to use this information // to place a runtime bound check. bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, SymbolicStrides); if (!CanDoRTIfNeeded) { recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " << "the array bounds.\n"); CanVecMem = false; return; } DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); CanVecMem = true; if (Accesses.isDependencyCheckNeeded()) { DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); CanVecMem = DepChecker->areDepsSafe( DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); // Clear the dependency checks. We assume they are not needed. Accesses.resetDepChecks(*DepChecker); PtrRtChecking->reset(); PtrRtChecking->Need = true; auto *SE = PSE->getSE(); CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, SymbolicStrides, true); // Check that we found the bounds for the pointer. if (!CanDoRTIfNeeded) { recordAnalysis("CantCheckMemDepsAtRunTime") << "cannot check memory dependencies at runtime"; DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); CanVecMem = false; return; } CanVecMem = true; } } if (CanVecMem) DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop. We" << (PtrRtChecking->Need ? "" : " don't") << " need runtime memory checks.\n"); else { recordAnalysis("UnsafeMemDep") << "unsafe dependent memory operations in loop. Use " "#pragma loop distribute(enable) to allow loop distribution " "to attempt to isolate the offending operations into a separate " "loop"; DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); } } bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, DominatorTree *DT) { assert(TheLoop->contains(BB) && "Unknown block used"); // Blocks that do not dominate the latch need predication. BasicBlock* Latch = TheLoop->getLoopLatch(); return !DT->dominates(BB, Latch); } OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, Instruction *I) { assert(!Report && "Multiple reports generated"); Value *CodeRegion = TheLoop->getHeader(); DebugLoc DL = TheLoop->getStartLoc(); if (I) { CodeRegion = I->getParent(); // If there is no debug location attached to the instruction, revert back to // using the loop's. if (I->getDebugLoc()) DL = I->getDebugLoc(); } Report = make_unique(DEBUG_TYPE, RemarkName, DL, CodeRegion); return *Report; } bool LoopAccessInfo::isUniform(Value *V) const { auto *SE = PSE->getSE(); // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is // never considered uniform. // TODO: Is this really what we want? Even without FP SCEV, we may want some // trivially loop-invariant FP values to be considered uniform. if (!SE->isSCEVable(V->getType())) return false; return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); } // FIXME: this function is currently a duplicate of the one in // LoopVectorize.cpp. static Instruction *getFirstInst(Instruction *FirstInst, Value *V, Instruction *Loc) { if (FirstInst) return FirstInst; if (Instruction *I = dyn_cast(V)) return I->getParent() == Loc->getParent() ? I : nullptr; return nullptr; } namespace { /// \brief IR Values for the lower and upper bounds of a pointer evolution. We /// need to use value-handles because SCEV expansion can invalidate previously /// expanded values. Thus expansion of a pointer can invalidate the bounds for /// a previous one. struct PointerBounds { TrackingVH Start; TrackingVH End; }; } // end anonymous namespace /// \brief Expand code for the lower and upper bound of the pointer group \p CG /// in \p TheLoop. \return the values for the bounds. static PointerBounds expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, const RuntimePointerChecking &PtrRtChecking) { Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; const SCEV *Sc = SE->getSCEV(Ptr); unsigned AS = Ptr->getType()->getPointerAddressSpace(); LLVMContext &Ctx = Loc->getContext(); // Use this type for pointer arithmetic. Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); if (SE->isLoopInvariant(Sc, TheLoop)) { DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr << "\n"); // Ptr could be in the loop body. If so, expand a new one at the correct // location. Instruction *Inst = dyn_cast(Ptr); Value *NewPtr = (Inst && TheLoop->contains(Inst)) ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) : Ptr; // We must return a half-open range, which means incrementing Sc. const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); return {NewPtr, NewPtrPlusOne}; } else { Value *Start = nullptr, *End = nullptr; DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); return {Start, End}; } } /// \brief Turns a collection of checks into a collection of expanded upper and /// lower bounds for both pointers in the check. static SmallVector, 4> expandBounds( const SmallVectorImpl &PointerChecks, Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, const RuntimePointerChecking &PtrRtChecking) { SmallVector, 4> ChecksWithBounds; // Here we're relying on the SCEV Expander's cache to only emit code for the // same bounds once. transform( PointerChecks, std::back_inserter(ChecksWithBounds), [&](const RuntimePointerChecking::PointerCheck &Check) { PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); return std::make_pair(First, Second); }); return ChecksWithBounds; } std::pair LoopAccessInfo::addRuntimeChecks( Instruction *Loc, const SmallVectorImpl &PointerChecks) const { const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); auto *SE = PSE->getSE(); SCEVExpander Exp(*SE, DL, "induction"); auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); LLVMContext &Ctx = Loc->getContext(); Instruction *FirstInst = nullptr; IRBuilder<> ChkBuilder(Loc); // Our instructions might fold to a constant. Value *MemoryRuntimeCheck = nullptr; for (const auto &Check : ExpandedChecks) { const PointerBounds &A = Check.first, &B = Check.second; // Check if two pointers (A and B) conflict where conflict is computed as: // start(A) <= end(B) && start(B) <= end(A) unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); assert((AS0 == B.End->getType()->getPointerAddressSpace()) && (AS1 == A.End->getType()->getPointerAddressSpace()) && "Trying to bounds check pointers with different address spaces"); Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); // [A|B].Start points to the first accessed byte under base [A|B]. // [A|B].End points to the last accessed byte, plus one. // There is no conflict when the intervals are disjoint: // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) // // bound0 = (B.Start < A.End) // bound1 = (A.Start < B.End) // IsConflict = bound0 & bound1 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); FirstInst = getFirstInst(FirstInst, Cmp0, Loc); Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); FirstInst = getFirstInst(FirstInst, Cmp1, Loc); Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); FirstInst = getFirstInst(FirstInst, IsConflict, Loc); if (MemoryRuntimeCheck) { IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); FirstInst = getFirstInst(FirstInst, IsConflict, Loc); } MemoryRuntimeCheck = IsConflict; } if (!MemoryRuntimeCheck) return std::make_pair(nullptr, nullptr); // We have to do this trickery because the IRBuilder might fold the check to a // constant expression in which case there is no Instruction anchored in a // the block. Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx)); ChkBuilder.Insert(Check, "memcheck.conflict"); FirstInst = getFirstInst(FirstInst, Check, Loc); return std::make_pair(FirstInst, Check); } std::pair LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { if (!PtrRtChecking->Need) return std::make_pair(nullptr, nullptr); return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); } void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { Value *Ptr = nullptr; if (LoadInst *LI = dyn_cast(MemAccess)) Ptr = LI->getPointerOperand(); else if (StoreInst *SI = dyn_cast(MemAccess)) Ptr = SI->getPointerOperand(); else return; Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); if (!Stride) return; DEBUG(dbgs() << "LAA: Found a strided access that we can version"); DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); SymbolicStrides[Ptr] = Stride; StrideSet.insert(Stride); } LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI, AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI) : PSE(llvm::make_unique(*SE, *L)), PtrRtChecking(llvm::make_unique(SE)), DepChecker(llvm::make_unique(*PSE, L)), TheLoop(L), NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), StoreToLoopInvariantAddress(false) { if (canAnalyzeLoop()) analyzeLoop(AA, LI, TLI, DT); } void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { if (CanVecMem) { OS.indent(Depth) << "Memory dependences are safe"; if (MaxSafeDepDistBytes != -1ULL) OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes << " bytes"; if (PtrRtChecking->Need) OS << " with run-time checks"; OS << "\n"; } if (Report) OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; if (auto *Dependences = DepChecker->getDependences()) { OS.indent(Depth) << "Dependences:\n"; for (auto &Dep : *Dependences) { Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); OS << "\n"; } } else OS.indent(Depth) << "Too many dependences, not recorded\n"; // List the pair of accesses need run-time checks to prove independence. PtrRtChecking->print(OS, Depth); OS << "\n"; OS.indent(Depth) << "Store to invariant address was " << (StoreToLoopInvariantAddress ? "" : "not ") << "found in loop.\n"; OS.indent(Depth) << "SCEV assumptions:\n"; PSE->getUnionPredicate().print(OS, Depth); OS << "\n"; OS.indent(Depth) << "Expressions re-written:\n"; PSE->print(OS, Depth); } const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { auto &LAI = LoopAccessInfoMap[L]; if (!LAI) LAI = llvm::make_unique(L, SE, TLI, AA, DT, LI); return *LAI.get(); } void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { LoopAccessLegacyAnalysis &LAA = *const_cast(this); for (Loop *TopLevelLoop : *LI) for (Loop *L : depth_first(TopLevelLoop)) { OS.indent(2) << L->getHeader()->getName() << ":\n"; auto &LAI = LAA.getInfo(L); LAI.print(OS, 4); } } bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { SE = &getAnalysis().getSE(); auto *TLIP = getAnalysisIfAvailable(); TLI = TLIP ? &TLIP->getTLI() : nullptr; AA = &getAnalysis().getAAResults(); DT = &getAnalysis().getDomTree(); LI = &getAnalysis().getLoopInfo(); return false; } void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } char LoopAccessLegacyAnalysis::ID = 0; static const char laa_name[] = "Loop Access Analysis"; #define LAA_NAME "loop-accesses" INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) AnalysisKey LoopAccessAnalysis::Key; LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR) { return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); } namespace llvm { Pass *createLAAPass() { return new LoopAccessLegacyAnalysis(); } } // end namespace llvm