//=- llvm/CodeGen/DFAPacketizer.cpp - DFA Packetizer for VLIW -*- C++ -*-=====// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This class implements a deterministic finite automaton (DFA) based // packetizing mechanism for VLIW architectures. It provides APIs to // determine whether there exists a legal mapping of instructions to // functional unit assignments in a packet. The DFA is auto-generated from // the target's Schedule.td file. // // A DFA consists of 3 major elements: states, inputs, and transitions. For // the packetizing mechanism, the input is the set of instruction classes for // a target. The state models all possible combinations of functional unit // consumption for a given set of instructions in a packet. A transition // models the addition of an instruction to a packet. In the DFA constructed // by this class, if an instruction can be added to a packet, then a valid // transition exists from the corresponding state. Invalid transitions // indicate that the instruction cannot be added to the current packet. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/DFAPacketizer.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBundle.h" #include "llvm/CodeGen/ScheduleDAGInstrs.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; // -------------------------------------------------------------------- // Definitions shared between DFAPacketizer.cpp and DFAPacketizerEmitter.cpp namespace { DFAInput addDFAFuncUnits(DFAInput Inp, unsigned FuncUnits) { return (Inp << DFA_MAX_RESOURCES) | FuncUnits; } /// Return the DFAInput for an instruction class input vector. /// This function is used in both DFAPacketizer.cpp and in /// DFAPacketizerEmitter.cpp. DFAInput getDFAInsnInput(const std::vector &InsnClass) { DFAInput InsnInput = 0; assert((InsnClass.size() <= DFA_MAX_RESTERMS) && "Exceeded maximum number of DFA terms"); for (auto U : InsnClass) InsnInput = addDFAFuncUnits(InsnInput, U); return InsnInput; } } // -------------------------------------------------------------------- DFAPacketizer::DFAPacketizer(const InstrItineraryData *I, const DFAStateInput (*SIT)[2], const unsigned *SET): InstrItins(I), CurrentState(0), DFAStateInputTable(SIT), DFAStateEntryTable(SET) { // Make sure DFA types are large enough for the number of terms & resources. assert((DFA_MAX_RESTERMS * DFA_MAX_RESOURCES) <= (8 * sizeof(DFAInput)) && "(DFA_MAX_RESTERMS * DFA_MAX_RESOURCES) too big for DFAInput"); assert((DFA_MAX_RESTERMS * DFA_MAX_RESOURCES) <= (8 * sizeof(DFAStateInput)) && "(DFA_MAX_RESTERMS * DFA_MAX_RESOURCES) too big for DFAStateInput"); } // Read the DFA transition table and update CachedTable. // // Format of the transition tables: // DFAStateInputTable[][2] = pairs of for all valid // transitions // DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable // for the ith state // void DFAPacketizer::ReadTable(unsigned int state) { unsigned ThisState = DFAStateEntryTable[state]; unsigned NextStateInTable = DFAStateEntryTable[state+1]; // Early exit in case CachedTable has already contains this // state's transitions. if (CachedTable.count(UnsignPair(state, DFAStateInputTable[ThisState][0]))) return; for (unsigned i = ThisState; i < NextStateInTable; i++) CachedTable[UnsignPair(state, DFAStateInputTable[i][0])] = DFAStateInputTable[i][1]; } // Return the DFAInput for an instruction class. DFAInput DFAPacketizer::getInsnInput(unsigned InsnClass) { // Note: this logic must match that in DFAPacketizerDefs.h for input vectors. DFAInput InsnInput = 0; unsigned i = 0; (void)i; for (const InstrStage *IS = InstrItins->beginStage(InsnClass), *IE = InstrItins->endStage(InsnClass); IS != IE; ++IS) { InsnInput = addDFAFuncUnits(InsnInput, IS->getUnits()); assert((i++ < DFA_MAX_RESTERMS) && "Exceeded maximum number of DFA inputs"); } return InsnInput; } // Return the DFAInput for an instruction class input vector. DFAInput DFAPacketizer::getInsnInput(const std::vector &InsnClass) { return getDFAInsnInput(InsnClass); } // Check if the resources occupied by a MCInstrDesc are available in the // current state. bool DFAPacketizer::canReserveResources(const llvm::MCInstrDesc *MID) { unsigned InsnClass = MID->getSchedClass(); DFAInput InsnInput = getInsnInput(InsnClass); UnsignPair StateTrans = UnsignPair(CurrentState, InsnInput); ReadTable(CurrentState); return CachedTable.count(StateTrans) != 0; } // Reserve the resources occupied by a MCInstrDesc and change the current // state to reflect that change. void DFAPacketizer::reserveResources(const llvm::MCInstrDesc *MID) { unsigned InsnClass = MID->getSchedClass(); DFAInput InsnInput = getInsnInput(InsnClass); UnsignPair StateTrans = UnsignPair(CurrentState, InsnInput); ReadTable(CurrentState); assert(CachedTable.count(StateTrans) != 0); CurrentState = CachedTable[StateTrans]; } // Check if the resources occupied by a machine instruction are available // in the current state. bool DFAPacketizer::canReserveResources(llvm::MachineInstr &MI) { const llvm::MCInstrDesc &MID = MI.getDesc(); return canReserveResources(&MID); } // Reserve the resources occupied by a machine instruction and change the // current state to reflect that change. void DFAPacketizer::reserveResources(llvm::MachineInstr &MI) { const llvm::MCInstrDesc &MID = MI.getDesc(); reserveResources(&MID); } namespace llvm { // This class extends ScheduleDAGInstrs and overrides the schedule method // to build the dependence graph. class DefaultVLIWScheduler : public ScheduleDAGInstrs { private: AliasAnalysis *AA; /// Ordered list of DAG postprocessing steps. std::vector> Mutations; public: DefaultVLIWScheduler(MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA); // Actual scheduling work. void schedule() override; /// DefaultVLIWScheduler takes ownership of the Mutation object. void addMutation(std::unique_ptr Mutation) { Mutations.push_back(std::move(Mutation)); } protected: void postprocessDAG(); }; } DefaultVLIWScheduler::DefaultVLIWScheduler(MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA) : ScheduleDAGInstrs(MF, &MLI), AA(AA) { CanHandleTerminators = true; } /// Apply each ScheduleDAGMutation step in order. void DefaultVLIWScheduler::postprocessDAG() { for (auto &M : Mutations) M->apply(this); } void DefaultVLIWScheduler::schedule() { // Build the scheduling graph. buildSchedGraph(AA); postprocessDAG(); } VLIWPacketizerList::VLIWPacketizerList(MachineFunction &mf, MachineLoopInfo &mli, AliasAnalysis *aa) : MF(mf), TII(mf.getSubtarget().getInstrInfo()), AA(aa) { ResourceTracker = TII->CreateTargetScheduleState(MF.getSubtarget()); VLIWScheduler = new DefaultVLIWScheduler(MF, mli, AA); } VLIWPacketizerList::~VLIWPacketizerList() { if (VLIWScheduler) delete VLIWScheduler; if (ResourceTracker) delete ResourceTracker; } // End the current packet, bundle packet instructions and reset DFA state. void VLIWPacketizerList::endPacket(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI) { if (CurrentPacketMIs.size() > 1) { MachineInstr &MIFirst = *CurrentPacketMIs.front(); finalizeBundle(*MBB, MIFirst.getIterator(), MI.getInstrIterator()); } CurrentPacketMIs.clear(); ResourceTracker->clearResources(); } // Bundle machine instructions into packets. void VLIWPacketizerList::PacketizeMIs(MachineBasicBlock *MBB, MachineBasicBlock::iterator BeginItr, MachineBasicBlock::iterator EndItr) { assert(VLIWScheduler && "VLIW Scheduler is not initialized!"); VLIWScheduler->startBlock(MBB); VLIWScheduler->enterRegion(MBB, BeginItr, EndItr, std::distance(BeginItr, EndItr)); VLIWScheduler->schedule(); // Generate MI -> SU map. MIToSUnit.clear(); for (SUnit &SU : VLIWScheduler->SUnits) MIToSUnit[SU.getInstr()] = &SU; // The main packetizer loop. for (; BeginItr != EndItr; ++BeginItr) { MachineInstr &MI = *BeginItr; initPacketizerState(); // End the current packet if needed. if (isSoloInstruction(MI)) { endPacket(MBB, MI); continue; } // Ignore pseudo instructions. if (ignorePseudoInstruction(MI, MBB)) continue; SUnit *SUI = MIToSUnit[&MI]; assert(SUI && "Missing SUnit Info!"); // Ask DFA if machine resource is available for MI. bool ResourceAvail = ResourceTracker->canReserveResources(MI); if (ResourceAvail && shouldAddToPacket(MI)) { // Dependency check for MI with instructions in CurrentPacketMIs. for (auto MJ : CurrentPacketMIs) { SUnit *SUJ = MIToSUnit[MJ]; assert(SUJ && "Missing SUnit Info!"); // Is it legal to packetize SUI and SUJ together. if (!isLegalToPacketizeTogether(SUI, SUJ)) { // Allow packetization if dependency can be pruned. if (!isLegalToPruneDependencies(SUI, SUJ)) { // End the packet if dependency cannot be pruned. endPacket(MBB, MI); break; } } } } else { // End the packet if resource is not available, or if the instruction // shoud not be added to the current packet. endPacket(MBB, MI); } // Add MI to the current packet. BeginItr = addToPacket(MI); } // For all instructions in the packetization range. // End any packet left behind. endPacket(MBB, EndItr); VLIWScheduler->exitRegion(); VLIWScheduler->finishBlock(); } // Add a DAG mutation object to the ordered list. void VLIWPacketizerList::addMutation( std::unique_ptr Mutation) { VLIWScheduler->addMutation(std::move(Mutation)); }