//===- MemorySSA.cpp - Unit tests for MemorySSA ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/IR/DataLayout.h" #include "llvm/Transforms/Utils/MemorySSA.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "gtest/gtest.h" using namespace llvm; TEST(MemorySSA, RemoveMemoryAccess) { LLVMContext &C(getGlobalContext()); IRBuilder<> B(C); DataLayout DL("e-i64:64-f80:128-n8:16:32:64-S128"); TargetLibraryInfoImpl TLII; TargetLibraryInfo TLI(TLII); // We create a diamond where there is a store on one side, and then a load // after the merge point. This enables us to test a bunch of different // removal cases. std::unique_ptr F(Function::Create( FunctionType::get(B.getVoidTy(), {B.getInt8PtrTy()}, false), GlobalValue::ExternalLinkage, "F")); BasicBlock *Entry(BasicBlock::Create(C, "", F.get())); BasicBlock *Left(BasicBlock::Create(C, "", F.get())); BasicBlock *Right(BasicBlock::Create(C, "", F.get())); BasicBlock *Merge(BasicBlock::Create(C, "", F.get())); B.SetInsertPoint(Entry); B.CreateCondBr(B.getTrue(), Left, Right); B.SetInsertPoint(Left); Argument *PointerArg = &*F->arg_begin(); StoreInst *StoreInst = B.CreateStore(B.getInt8(16), PointerArg); BranchInst::Create(Merge, Left); BranchInst::Create(Merge, Right); B.SetInsertPoint(Merge); LoadInst *LoadInst = B.CreateLoad(PointerArg); std::unique_ptr MSSA(new MemorySSA(*F)); std::unique_ptr DT(new DominatorTree(*F)); std::unique_ptr AC(new AssumptionCache(*F)); AAResults *AA = new AAResults(TLI); BasicAAResult *BAA = new BasicAAResult(DL, TLI, *AC, &*DT); AA->addAAResult(*BAA); MemorySSAWalker *Walker = MSSA->buildMemorySSA(AA, &*DT); // Before, the load will be a use of a phi. It should be // the same after. MemoryUse *LoadAccess = cast(MSSA->getMemoryAccess(LoadInst)); MemoryDef *StoreAccess = cast(MSSA->getMemoryAccess(StoreInst)); MemoryAccess *DefiningAccess = LoadAccess->getDefiningAccess(); EXPECT_TRUE(isa(DefiningAccess)); // The load is currently clobbered by one of the phi arguments, so the walker // should determine the clobbering access as the phi. EXPECT_EQ(DefiningAccess, Walker->getClobberingMemoryAccess(LoadInst)); MSSA->removeMemoryAccess(StoreAccess); MSSA->verifyMemorySSA(); // After the removeaccess, let's see if we got the right accesses // The load should still point to the phi ... EXPECT_EQ(DefiningAccess, LoadAccess->getDefiningAccess()); // but we should now get live on entry for the clobbering definition of the // load, since it will walk past the phi node since every argument is the // same. EXPECT_TRUE( MSSA->isLiveOnEntryDef(Walker->getClobberingMemoryAccess(LoadInst))); // The phi should now be a two entry phi with two live on entry defs. for (const auto &Op : DefiningAccess->operands()) { MemoryAccess *Operand = cast(&*Op); EXPECT_TRUE(MSSA->isLiveOnEntryDef(Operand)); } // Now we try to remove the single valued phi MSSA->removeMemoryAccess(DefiningAccess); MSSA->verifyMemorySSA(); // Now the load should be a load of live on entry. EXPECT_TRUE(MSSA->isLiveOnEntryDef(LoadAccess->getDefiningAccess())); }