//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the PowerPC implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "PPCInstrInfo.h" #include "MCTargetDesc/PPCPredicates.h" #include "PPC.h" #include "PPCHazardRecognizers.h" #include "PPCInstrBuilder.h" #include "PPCMachineFunctionInfo.h" #include "PPCTargetMachine.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "ppc-instr-info" #define GET_INSTRMAP_INFO #define GET_INSTRINFO_CTOR_DTOR #include "PPCGenInstrInfo.inc" static cl:: opt DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, cl::desc("Disable analysis for CTR loops")); static cl::opt DisableCmpOpt("disable-ppc-cmp-opt", cl::desc("Disable compare instruction optimization"), cl::Hidden); static cl::opt VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), cl::Hidden); static cl::opt UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, cl::desc("Use the old (incorrect) instruction latency calculation")); // Pin the vtable to this file. void PPCInstrInfo::anchor() {} PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), Subtarget(STI), RI(STI.getTargetMachine()) {} /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for /// this target when scheduling the DAG. ScheduleHazardRecognizer * PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, const ScheduleDAG *DAG) const { unsigned Directive = static_cast(STI)->getDarwinDirective(); if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { const InstrItineraryData *II = static_cast(STI)->getInstrItineraryData(); return new ScoreboardHazardRecognizer(II, DAG); } return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); } /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer /// to use for this target when scheduling the DAG. ScheduleHazardRecognizer * PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const { unsigned Directive = DAG->MF.getSubtarget().getDarwinDirective(); // FIXME: Leaving this as-is until we have POWER9 scheduling info if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) return new PPCDispatchGroupSBHazardRecognizer(II, DAG); // Most subtargets use a PPC970 recognizer. if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { assert(DAG->TII && "No InstrInfo?"); return new PPCHazardRecognizer970(*DAG); } return new ScoreboardHazardRecognizer(II, DAG); } unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost) const { if (!ItinData || UseOldLatencyCalc) return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); // The default implementation of getInstrLatency calls getStageLatency, but // getStageLatency does not do the right thing for us. While we have // itinerary, most cores are fully pipelined, and so the itineraries only // express the first part of the pipeline, not every stage. Instead, we need // to use the listed output operand cycle number (using operand 0 here, which // is an output). unsigned Latency = 1; unsigned DefClass = MI.getDesc().getSchedClass(); for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) continue; int Cycle = ItinData->getOperandCycle(DefClass, i); if (Cycle < 0) continue; Latency = std::max(Latency, (unsigned) Cycle); } return Latency; } int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); if (!DefMI.getParent()) return Latency; const MachineOperand &DefMO = DefMI.getOperand(DefIdx); unsigned Reg = DefMO.getReg(); bool IsRegCR; if (TargetRegisterInfo::isVirtualRegister(Reg)) { const MachineRegisterInfo *MRI = &DefMI.getParent()->getParent()->getRegInfo(); IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); } else { IsRegCR = PPC::CRRCRegClass.contains(Reg) || PPC::CRBITRCRegClass.contains(Reg); } if (UseMI.isBranch() && IsRegCR) { if (Latency < 0) Latency = getInstrLatency(ItinData, DefMI); // On some cores, there is an additional delay between writing to a condition // register, and using it from a branch. unsigned Directive = Subtarget.getDarwinDirective(); switch (Directive) { default: break; case PPC::DIR_7400: case PPC::DIR_750: case PPC::DIR_970: case PPC::DIR_E5500: case PPC::DIR_PWR4: case PPC::DIR_PWR5: case PPC::DIR_PWR5X: case PPC::DIR_PWR6: case PPC::DIR_PWR6X: case PPC::DIR_PWR7: case PPC::DIR_PWR8: // FIXME: Is this needed for POWER9? Latency += 2; break; } } return Latency; } // This function does not list all associative and commutative operations, but // only those worth feeding through the machine combiner in an attempt to // reduce the critical path. Mostly, this means floating-point operations, // because they have high latencies (compared to other operations, such and // and/or, which are also associative and commutative, but have low latencies). bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { switch (Inst.getOpcode()) { // FP Add: case PPC::FADD: case PPC::FADDS: // FP Multiply: case PPC::FMUL: case PPC::FMULS: // Altivec Add: case PPC::VADDFP: // VSX Add: case PPC::XSADDDP: case PPC::XVADDDP: case PPC::XVADDSP: case PPC::XSADDSP: // VSX Multiply: case PPC::XSMULDP: case PPC::XVMULDP: case PPC::XVMULSP: case PPC::XSMULSP: // QPX Add: case PPC::QVFADD: case PPC::QVFADDS: case PPC::QVFADDSs: // QPX Multiply: case PPC::QVFMUL: case PPC::QVFMULS: case PPC::QVFMULSs: return true; default: return false; } } bool PPCInstrInfo::getMachineCombinerPatterns( MachineInstr &Root, SmallVectorImpl &Patterns) const { // Using the machine combiner in this way is potentially expensive, so // restrict to when aggressive optimizations are desired. if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) return false; // FP reassociation is only legal when we don't need strict IEEE semantics. if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) return false; return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns); } // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg, unsigned &SubIdx) const { switch (MI.getOpcode()) { default: return false; case PPC::EXTSW: case PPC::EXTSW_32_64: SrcReg = MI.getOperand(1).getReg(); DstReg = MI.getOperand(0).getReg(); SubIdx = PPC::sub_32; return true; } } unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const { // Note: This list must be kept consistent with LoadRegFromStackSlot. switch (MI.getOpcode()) { default: break; case PPC::LD: case PPC::LWZ: case PPC::LFS: case PPC::LFD: case PPC::RESTORE_CR: case PPC::RESTORE_CRBIT: case PPC::LVX: case PPC::LXVD2X: case PPC::QVLFDX: case PPC::QVLFSXs: case PPC::QVLFDXb: case PPC::RESTORE_VRSAVE: // Check for the operands added by addFrameReference (the immediate is the // offset which defaults to 0). if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && MI.getOperand(2).isFI()) { FrameIndex = MI.getOperand(2).getIndex(); return MI.getOperand(0).getReg(); } break; } return 0; } unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const { // Note: This list must be kept consistent with StoreRegToStackSlot. switch (MI.getOpcode()) { default: break; case PPC::STD: case PPC::STW: case PPC::STFS: case PPC::STFD: case PPC::SPILL_CR: case PPC::SPILL_CRBIT: case PPC::STVX: case PPC::STXVD2X: case PPC::QVSTFDX: case PPC::QVSTFSXs: case PPC::QVSTFDXb: case PPC::SPILL_VRSAVE: // Check for the operands added by addFrameReference (the immediate is the // offset which defaults to 0). if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && MI.getOperand(2).isFI()) { FrameIndex = MI.getOperand(2).getIndex(); return MI.getOperand(0).getReg(); } break; } return 0; } MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const { MachineFunction &MF = *MI.getParent()->getParent(); // Normal instructions can be commuted the obvious way. if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo) return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because // changing the relative order of the mask operands might change what happens // to the high-bits of the mask (and, thus, the result). // Cannot commute if it has a non-zero rotate count. if (MI.getOperand(3).getImm() != 0) return nullptr; // If we have a zero rotate count, we have: // M = mask(MB,ME) // Op0 = (Op1 & ~M) | (Op2 & M) // Change this to: // M = mask((ME+1)&31, (MB-1)&31) // Op0 = (Op2 & ~M) | (Op1 & M) // Swap op1/op2 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo."); unsigned Reg0 = MI.getOperand(0).getReg(); unsigned Reg1 = MI.getOperand(1).getReg(); unsigned Reg2 = MI.getOperand(2).getReg(); unsigned SubReg1 = MI.getOperand(1).getSubReg(); unsigned SubReg2 = MI.getOperand(2).getSubReg(); bool Reg1IsKill = MI.getOperand(1).isKill(); bool Reg2IsKill = MI.getOperand(2).isKill(); bool ChangeReg0 = false; // If machine instrs are no longer in two-address forms, update // destination register as well. if (Reg0 == Reg1) { // Must be two address instruction! assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && "Expecting a two-address instruction!"); assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); Reg2IsKill = false; ChangeReg0 = true; } // Masks. unsigned MB = MI.getOperand(4).getImm(); unsigned ME = MI.getOperand(5).getImm(); // We can't commute a trivial mask (there is no way to represent an all-zero // mask). if (MB == 0 && ME == 31) return nullptr; if (NewMI) { // Create a new instruction. unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); bool Reg0IsDead = MI.getOperand(0).isDead(); return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) .addReg(Reg2, getKillRegState(Reg2IsKill)) .addReg(Reg1, getKillRegState(Reg1IsKill)) .addImm((ME + 1) & 31) .addImm((MB - 1) & 31); } if (ChangeReg0) { MI.getOperand(0).setReg(Reg2); MI.getOperand(0).setSubReg(SubReg2); } MI.getOperand(2).setReg(Reg1); MI.getOperand(1).setReg(Reg2); MI.getOperand(2).setSubReg(SubReg1); MI.getOperand(1).setSubReg(SubReg2); MI.getOperand(2).setIsKill(Reg1IsKill); MI.getOperand(1).setIsKill(Reg2IsKill); // Swap the mask around. MI.getOperand(4).setImm((ME + 1) & 31); MI.getOperand(5).setImm((MB - 1) & 31); return &MI; } bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const { // For VSX A-Type FMA instructions, it is the first two operands that can be // commuted, however, because the non-encoded tied input operand is listed // first, the operands to swap are actually the second and third. int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); if (AltOpc == -1) return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 // and SrcOpIdx2. return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); } void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { // This function is used for scheduling, and the nop wanted here is the type // that terminates dispatch groups on the POWER cores. unsigned Directive = Subtarget.getDarwinDirective(); unsigned Opcode; switch (Directive) { default: Opcode = PPC::NOP; break; case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ // FIXME: Update when POWER9 scheduling model is ready. case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; } DebugLoc DL; BuildMI(MBB, MI, DL, get(Opcode)); } /// getNoopForMachoTarget - Return the noop instruction to use for a noop. void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { NopInst.setOpcode(PPC::NOP); } // Branch analysis. // Note: If the condition register is set to CTR or CTR8 then this is a // BDNZ (imm == 1) or BDZ (imm == 0) branch. bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { bool isPPC64 = Subtarget.isPPC64(); // If the block has no terminators, it just falls into the block after it. MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); if (I == MBB.end()) return false; if (!isUnpredicatedTerminator(*I)) return false; // Get the last instruction in the block. MachineInstr &LastInst = *I; // If there is only one terminator instruction, process it. if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { if (LastInst.getOpcode() == PPC::B) { if (!LastInst.getOperand(0).isMBB()) return true; TBB = LastInst.getOperand(0).getMBB(); return false; } else if (LastInst.getOpcode() == PPC::BCC) { if (!LastInst.getOperand(2).isMBB()) return true; // Block ends with fall-through condbranch. TBB = LastInst.getOperand(2).getMBB(); Cond.push_back(LastInst.getOperand(0)); Cond.push_back(LastInst.getOperand(1)); return false; } else if (LastInst.getOpcode() == PPC::BC) { if (!LastInst.getOperand(1).isMBB()) return true; // Block ends with fall-through condbranch. TBB = LastInst.getOperand(1).getMBB(); Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); Cond.push_back(LastInst.getOperand(0)); return false; } else if (LastInst.getOpcode() == PPC::BCn) { if (!LastInst.getOperand(1).isMBB()) return true; // Block ends with fall-through condbranch. TBB = LastInst.getOperand(1).getMBB(); Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); Cond.push_back(LastInst.getOperand(0)); return false; } else if (LastInst.getOpcode() == PPC::BDNZ8 || LastInst.getOpcode() == PPC::BDNZ) { if (!LastInst.getOperand(0).isMBB()) return true; if (DisableCTRLoopAnal) return true; TBB = LastInst.getOperand(0).getMBB(); Cond.push_back(MachineOperand::CreateImm(1)); Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, true)); return false; } else if (LastInst.getOpcode() == PPC::BDZ8 || LastInst.getOpcode() == PPC::BDZ) { if (!LastInst.getOperand(0).isMBB()) return true; if (DisableCTRLoopAnal) return true; TBB = LastInst.getOperand(0).getMBB(); Cond.push_back(MachineOperand::CreateImm(0)); Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, true)); return false; } // Otherwise, don't know what this is. return true; } // Get the instruction before it if it's a terminator. MachineInstr &SecondLastInst = *I; // If there are three terminators, we don't know what sort of block this is. if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) return true; // If the block ends with PPC::B and PPC:BCC, handle it. if (SecondLastInst.getOpcode() == PPC::BCC && LastInst.getOpcode() == PPC::B) { if (!SecondLastInst.getOperand(2).isMBB() || !LastInst.getOperand(0).isMBB()) return true; TBB = SecondLastInst.getOperand(2).getMBB(); Cond.push_back(SecondLastInst.getOperand(0)); Cond.push_back(SecondLastInst.getOperand(1)); FBB = LastInst.getOperand(0).getMBB(); return false; } else if (SecondLastInst.getOpcode() == PPC::BC && LastInst.getOpcode() == PPC::B) { if (!SecondLastInst.getOperand(1).isMBB() || !LastInst.getOperand(0).isMBB()) return true; TBB = SecondLastInst.getOperand(1).getMBB(); Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); Cond.push_back(SecondLastInst.getOperand(0)); FBB = LastInst.getOperand(0).getMBB(); return false; } else if (SecondLastInst.getOpcode() == PPC::BCn && LastInst.getOpcode() == PPC::B) { if (!SecondLastInst.getOperand(1).isMBB() || !LastInst.getOperand(0).isMBB()) return true; TBB = SecondLastInst.getOperand(1).getMBB(); Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); Cond.push_back(SecondLastInst.getOperand(0)); FBB = LastInst.getOperand(0).getMBB(); return false; } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || SecondLastInst.getOpcode() == PPC::BDNZ) && LastInst.getOpcode() == PPC::B) { if (!SecondLastInst.getOperand(0).isMBB() || !LastInst.getOperand(0).isMBB()) return true; if (DisableCTRLoopAnal) return true; TBB = SecondLastInst.getOperand(0).getMBB(); Cond.push_back(MachineOperand::CreateImm(1)); Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, true)); FBB = LastInst.getOperand(0).getMBB(); return false; } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || SecondLastInst.getOpcode() == PPC::BDZ) && LastInst.getOpcode() == PPC::B) { if (!SecondLastInst.getOperand(0).isMBB() || !LastInst.getOperand(0).isMBB()) return true; if (DisableCTRLoopAnal) return true; TBB = SecondLastInst.getOperand(0).getMBB(); Cond.push_back(MachineOperand::CreateImm(0)); Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, true)); FBB = LastInst.getOperand(0).getMBB(); return false; } // If the block ends with two PPC:Bs, handle it. The second one is not // executed, so remove it. if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { if (!SecondLastInst.getOperand(0).isMBB()) return true; TBB = SecondLastInst.getOperand(0).getMBB(); I = LastInst; if (AllowModify) I->eraseFromParent(); return false; } // Otherwise, can't handle this. return true; } unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); if (I == MBB.end()) return 0; if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) return 0; // Remove the branch. I->eraseFromParent(); I = MBB.end(); if (I == MBB.begin()) return 1; --I; if (I->getOpcode() != PPC::BCC && I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) return 1; // Remove the branch. I->eraseFromParent(); return 2; } unsigned PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef Cond, const DebugLoc &DL) const { // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 2 || Cond.size() == 0) && "PPC branch conditions have two components!"); bool isPPC64 = Subtarget.isPPC64(); // One-way branch. if (!FBB) { if (Cond.empty()) // Unconditional branch BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) BuildMI(&MBB, DL, get(Cond[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); else if (Cond[0].getImm() == PPC::PRED_BIT_SET) BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); else // Conditional branch BuildMI(&MBB, DL, get(PPC::BCC)) .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); return 1; } // Two-way Conditional Branch. if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) BuildMI(&MBB, DL, get(Cond[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); else if (Cond[0].getImm() == PPC::PRED_BIT_SET) BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); else BuildMI(&MBB, DL, get(PPC::BCC)) .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); return 2; } // Select analysis. bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, ArrayRef Cond, unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const { if (!Subtarget.hasISEL()) return false; if (Cond.size() != 2) return false; // If this is really a bdnz-like condition, then it cannot be turned into a // select. if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) return false; // Check register classes. const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterClass *RC = RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); if (!RC) return false; // isel is for regular integer GPRs only. if (!PPC::GPRCRegClass.hasSubClassEq(RC) && !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && !PPC::G8RCRegClass.hasSubClassEq(RC) && !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) return false; // FIXME: These numbers are for the A2, how well they work for other cores is // an open question. On the A2, the isel instruction has a 2-cycle latency // but single-cycle throughput. These numbers are used in combination with // the MispredictPenalty setting from the active SchedMachineModel. CondCycles = 1; TrueCycles = 1; FalseCycles = 1; return true; } void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &dl, unsigned DestReg, ArrayRef Cond, unsigned TrueReg, unsigned FalseReg) const { assert(Cond.size() == 2 && "PPC branch conditions have two components!"); assert(Subtarget.hasISEL() && "Cannot insert select on target without ISEL support"); // Get the register classes. MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterClass *RC = RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); assert(RC && "TrueReg and FalseReg must have overlapping register classes"); bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); assert((Is64Bit || PPC::GPRCRegClass.hasSubClassEq(RC) || PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && "isel is for regular integer GPRs only"); unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; auto SelectPred = static_cast(Cond[0].getImm()); unsigned SubIdx = 0; bool SwapOps = false; switch (SelectPred) { case PPC::PRED_EQ: case PPC::PRED_EQ_MINUS: case PPC::PRED_EQ_PLUS: SubIdx = PPC::sub_eq; SwapOps = false; break; case PPC::PRED_NE: case PPC::PRED_NE_MINUS: case PPC::PRED_NE_PLUS: SubIdx = PPC::sub_eq; SwapOps = true; break; case PPC::PRED_LT: case PPC::PRED_LT_MINUS: case PPC::PRED_LT_PLUS: SubIdx = PPC::sub_lt; SwapOps = false; break; case PPC::PRED_GE: case PPC::PRED_GE_MINUS: case PPC::PRED_GE_PLUS: SubIdx = PPC::sub_lt; SwapOps = true; break; case PPC::PRED_GT: case PPC::PRED_GT_MINUS: case PPC::PRED_GT_PLUS: SubIdx = PPC::sub_gt; SwapOps = false; break; case PPC::PRED_LE: case PPC::PRED_LE_MINUS: case PPC::PRED_LE_PLUS: SubIdx = PPC::sub_gt; SwapOps = true; break; case PPC::PRED_UN: case PPC::PRED_UN_MINUS: case PPC::PRED_UN_PLUS: SubIdx = PPC::sub_un; SwapOps = false; break; case PPC::PRED_NU: case PPC::PRED_NU_MINUS: case PPC::PRED_NU_PLUS: SubIdx = PPC::sub_un; SwapOps = true; break; case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; } unsigned FirstReg = SwapOps ? FalseReg : TrueReg, SecondReg = SwapOps ? TrueReg : FalseReg; // The first input register of isel cannot be r0. If it is a member // of a register class that can be r0, then copy it first (the // register allocator should eliminate the copy). if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || MRI.getRegClass(FirstReg)->contains(PPC::X0)) { const TargetRegisterClass *FirstRC = MRI.getRegClass(FirstReg)->contains(PPC::X0) ? &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; unsigned OldFirstReg = FirstReg; FirstReg = MRI.createVirtualRegister(FirstRC); BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) .addReg(OldFirstReg); } BuildMI(MBB, MI, dl, get(OpCode), DestReg) .addReg(FirstReg).addReg(SecondReg) .addReg(Cond[1].getReg(), 0, SubIdx); } static unsigned getCRBitValue(unsigned CRBit) { unsigned Ret = 4; if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) Ret = 3; if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) Ret = 2; if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) Ret = 1; if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) Ret = 0; assert(Ret != 4 && "Invalid CR bit register"); return Ret; } void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { // We can end up with self copies and similar things as a result of VSX copy // legalization. Promote them here. const TargetRegisterInfo *TRI = &getRegisterInfo(); if (PPC::F8RCRegClass.contains(DestReg) && PPC::VSRCRegClass.contains(SrcReg)) { unsigned SuperReg = TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); if (VSXSelfCopyCrash && SrcReg == SuperReg) llvm_unreachable("nop VSX copy"); DestReg = SuperReg; } else if (PPC::VRRCRegClass.contains(DestReg) && PPC::VSRCRegClass.contains(SrcReg)) { unsigned SuperReg = TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass); if (VSXSelfCopyCrash && SrcReg == SuperReg) llvm_unreachable("nop VSX copy"); DestReg = SuperReg; } else if (PPC::F8RCRegClass.contains(SrcReg) && PPC::VSRCRegClass.contains(DestReg)) { unsigned SuperReg = TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); if (VSXSelfCopyCrash && DestReg == SuperReg) llvm_unreachable("nop VSX copy"); SrcReg = SuperReg; } else if (PPC::VRRCRegClass.contains(SrcReg) && PPC::VSRCRegClass.contains(DestReg)) { unsigned SuperReg = TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass); if (VSXSelfCopyCrash && DestReg == SuperReg) llvm_unreachable("nop VSX copy"); SrcReg = SuperReg; } // Different class register copy if (PPC::CRBITRCRegClass.contains(SrcReg) && PPC::GPRCRegClass.contains(DestReg)) { unsigned CRReg = getCRFromCRBit(SrcReg); BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); getKillRegState(KillSrc); // Rotate the CR bit in the CR fields to be the least significant bit and // then mask with 0x1 (MB = ME = 31). BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) .addReg(DestReg, RegState::Kill) .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) .addImm(31) .addImm(31); return; } else if (PPC::CRRCRegClass.contains(SrcReg) && PPC::G8RCRegClass.contains(DestReg)) { BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg); getKillRegState(KillSrc); return; } else if (PPC::CRRCRegClass.contains(SrcReg) && PPC::GPRCRegClass.contains(DestReg)) { BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg); getKillRegState(KillSrc); return; } unsigned Opc; if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) Opc = PPC::OR; else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) Opc = PPC::OR8; else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) Opc = PPC::FMR; else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) Opc = PPC::MCRF; else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) Opc = PPC::VOR; else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) // There are two different ways this can be done: // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only // issue in VSU pipeline 0. // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but // can go to either pipeline. // We'll always use xxlor here, because in practically all cases where // copies are generated, they are close enough to some use that the // lower-latency form is preferable. Opc = PPC::XXLOR; else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || PPC::VSSRCRegClass.contains(DestReg, SrcReg)) Opc = PPC::XXLORf; else if (PPC::QFRCRegClass.contains(DestReg, SrcReg)) Opc = PPC::QVFMR; else if (PPC::QSRCRegClass.contains(DestReg, SrcReg)) Opc = PPC::QVFMRs; else if (PPC::QBRCRegClass.contains(DestReg, SrcReg)) Opc = PPC::QVFMRb; else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) Opc = PPC::CROR; else llvm_unreachable("Impossible reg-to-reg copy"); const MCInstrDesc &MCID = get(Opc); if (MCID.getNumOperands() == 3) BuildMI(MBB, I, DL, MCID, DestReg) .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); else BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); } // This function returns true if a CR spill is necessary and false otherwise. bool PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs, bool &NonRI, bool &SpillsVRS) const{ // Note: If additional store instructions are added here, // update isStoreToStackSlot. DebugLoc DL; if (PPC::GPRCRegClass.hasSubClassEq(RC) || PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); return true; } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); return true; } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); NonRI = true; } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); NonRI = true; } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); NonRI = true; } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); NonRI = true; } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { assert(Subtarget.isDarwin() && "VRSAVE only needs spill/restore on Darwin"); NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); SpillsVRS = true; } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); NonRI = true; } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); NonRI = true; } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); NonRI = true; } else { llvm_unreachable("Unknown regclass!"); } return false; } void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { MachineFunction &MF = *MBB.getParent(); SmallVector NewMIs; PPCFunctionInfo *FuncInfo = MF.getInfo(); FuncInfo->setHasSpills(); bool NonRI = false, SpillsVRS = false; if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, NonRI, SpillsVRS)) FuncInfo->setSpillsCR(); if (SpillsVRS) FuncInfo->setSpillsVRSAVE(); if (NonRI) FuncInfo->setHasNonRISpills(); for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) MBB.insert(MI, NewMIs[i]); const MachineFrameInfo &MFI = MF.getFrameInfo(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FrameIdx), MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), MFI.getObjectAlignment(FrameIdx)); NewMIs.back()->addMemOperand(MF, MMO); } bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs, bool &NonRI, bool &SpillsVRS) const { // Note: If additional load instructions are added here, // update isLoadFromStackSlot. if (PPC::GPRCRegClass.hasSubClassEq(RC) || PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), DestReg), FrameIdx)); } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), FrameIdx)); } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), FrameIdx)); } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), FrameIdx)); } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::RESTORE_CR), DestReg), FrameIdx)); return true; } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::RESTORE_CRBIT), DestReg), FrameIdx)); return true; } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), FrameIdx)); NonRI = true; } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg), FrameIdx)); NonRI = true; } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg), FrameIdx)); NonRI = true; } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg), FrameIdx)); NonRI = true; } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { assert(Subtarget.isDarwin() && "VRSAVE only needs spill/restore on Darwin"); NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::RESTORE_VRSAVE), DestReg), FrameIdx)); SpillsVRS = true; } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg), FrameIdx)); NonRI = true; } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg), FrameIdx)); NonRI = true; } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg), FrameIdx)); NonRI = true; } else { llvm_unreachable("Unknown regclass!"); } return false; } void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { MachineFunction &MF = *MBB.getParent(); SmallVector NewMIs; DebugLoc DL; if (MI != MBB.end()) DL = MI->getDebugLoc(); PPCFunctionInfo *FuncInfo = MF.getInfo(); FuncInfo->setHasSpills(); bool NonRI = false, SpillsVRS = false; if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, NonRI, SpillsVRS)) FuncInfo->setSpillsCR(); if (SpillsVRS) FuncInfo->setSpillsVRSAVE(); if (NonRI) FuncInfo->setHasNonRISpills(); for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) MBB.insert(MI, NewMIs[i]); const MachineFrameInfo &MFI = MF.getFrameInfo(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FrameIdx), MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), MFI.getObjectAlignment(FrameIdx)); NewMIs.back()->addMemOperand(MF, MMO); } bool PPCInstrInfo:: ReverseBranchCondition(SmallVectorImpl &Cond) const { assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); else // Leave the CR# the same, but invert the condition. Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); return false; } bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, unsigned Reg, MachineRegisterInfo *MRI) const { // For some instructions, it is legal to fold ZERO into the RA register field. // A zero immediate should always be loaded with a single li. unsigned DefOpc = DefMI.getOpcode(); if (DefOpc != PPC::LI && DefOpc != PPC::LI8) return false; if (!DefMI.getOperand(1).isImm()) return false; if (DefMI.getOperand(1).getImm() != 0) return false; // Note that we cannot here invert the arguments of an isel in order to fold // a ZERO into what is presented as the second argument. All we have here // is the condition bit, and that might come from a CR-logical bit operation. const MCInstrDesc &UseMCID = UseMI.getDesc(); // Only fold into real machine instructions. if (UseMCID.isPseudo()) return false; unsigned UseIdx; for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) if (UseMI.getOperand(UseIdx).isReg() && UseMI.getOperand(UseIdx).getReg() == Reg) break; assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 // register (which might also be specified as a pointer class kind). if (UseInfo->isLookupPtrRegClass()) { if (UseInfo->RegClass /* Kind */ != 1) return false; } else { if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) return false; } // Make sure this is not tied to an output register (or otherwise // constrained). This is true for ST?UX registers, for example, which // are tied to their output registers. if (UseInfo->Constraints != 0) return false; unsigned ZeroReg; if (UseInfo->isLookupPtrRegClass()) { bool isPPC64 = Subtarget.isPPC64(); ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; } else { ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? PPC::ZERO8 : PPC::ZERO; } bool DeleteDef = MRI->hasOneNonDBGUse(Reg); UseMI.getOperand(UseIdx).setReg(ZeroReg); if (DeleteDef) DefMI.eraseFromParent(); return true; } static bool MBBDefinesCTR(MachineBasicBlock &MBB) { for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); I != IE; ++I) if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) return true; return false; } // We should make sure that, if we're going to predicate both sides of a // condition (a diamond), that both sides don't define the counter register. We // can predicate counter-decrement-based branches, but while that predicates // the branching, it does not predicate the counter decrement. If we tried to // merge the triangle into one predicated block, we'd decrement the counter // twice. bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumT, unsigned ExtraT, MachineBasicBlock &FMBB, unsigned NumF, unsigned ExtraF, BranchProbability Probability) const { return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); } bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { // The predicated branches are identified by their type, not really by the // explicit presence of a predicate. Furthermore, some of them can be // predicated more than once. Because if conversion won't try to predicate // any instruction which already claims to be predicated (by returning true // here), always return false. In doing so, we let isPredicable() be the // final word on whether not the instruction can be (further) predicated. return false; } bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { if (!MI.isTerminator()) return false; // Conditional branch is a special case. if (MI.isBranch() && !MI.isBarrier()) return true; return !isPredicated(MI); } bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, ArrayRef Pred) const { unsigned OpC = MI.getOpcode(); if (OpC == PPC::BLR || OpC == PPC::BLR8) { if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { bool isPPC64 = Subtarget.isPPC64(); MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { MI.setDesc(get(PPC::BCLR)); MachineInstrBuilder(*MI.getParent()->getParent(), MI) .addReg(Pred[1].getReg()); } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { MI.setDesc(get(PPC::BCLRn)); MachineInstrBuilder(*MI.getParent()->getParent(), MI) .addReg(Pred[1].getReg()); } else { MI.setDesc(get(PPC::BCCLR)); MachineInstrBuilder(*MI.getParent()->getParent(), MI) .addImm(Pred[0].getImm()) .addReg(Pred[1].getReg()); } return true; } else if (OpC == PPC::B) { if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { bool isPPC64 = Subtarget.isPPC64(); MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); MI.RemoveOperand(0); MI.setDesc(get(PPC::BC)); MachineInstrBuilder(*MI.getParent()->getParent(), MI) .addReg(Pred[1].getReg()) .addMBB(MBB); } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); MI.RemoveOperand(0); MI.setDesc(get(PPC::BCn)); MachineInstrBuilder(*MI.getParent()->getParent(), MI) .addReg(Pred[1].getReg()) .addMBB(MBB); } else { MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); MI.RemoveOperand(0); MI.setDesc(get(PPC::BCC)); MachineInstrBuilder(*MI.getParent()->getParent(), MI) .addImm(Pred[0].getImm()) .addReg(Pred[1].getReg()) .addMBB(MBB); } return true; } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; bool isPPC64 = Subtarget.isPPC64(); if (Pred[0].getImm() == PPC::PRED_BIT_SET) { MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) : (setLR ? PPC::BCCTRL : PPC::BCCTR))); MachineInstrBuilder(*MI.getParent()->getParent(), MI) .addReg(Pred[1].getReg()); return true; } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); MachineInstrBuilder(*MI.getParent()->getParent(), MI) .addReg(Pred[1].getReg()); return true; } MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); MachineInstrBuilder(*MI.getParent()->getParent(), MI) .addImm(Pred[0].getImm()) .addReg(Pred[1].getReg()); return true; } return false; } bool PPCInstrInfo::SubsumesPredicate(ArrayRef Pred1, ArrayRef Pred2) const { assert(Pred1.size() == 2 && "Invalid PPC first predicate"); assert(Pred2.size() == 2 && "Invalid PPC second predicate"); if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) return false; if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) return false; // P1 can only subsume P2 if they test the same condition register. if (Pred1[1].getReg() != Pred2[1].getReg()) return false; PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); if (P1 == P2) return true; // Does P1 subsume P2, e.g. GE subsumes GT. if (P1 == PPC::PRED_LE && (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) return true; if (P1 == PPC::PRED_GE && (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) return true; return false; } bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI, std::vector &Pred) const { // Note: At the present time, the contents of Pred from this function is // unused by IfConversion. This implementation follows ARM by pushing the // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of // predicate, instructions defining CTR or CTR8 are also included as // predicate-defining instructions. const TargetRegisterClass *RCs[] = { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; bool Found = false; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { const TargetRegisterClass *RC = RCs[c]; if (MO.isReg()) { if (MO.isDef() && RC->contains(MO.getReg())) { Pred.push_back(MO); Found = true; } } else if (MO.isRegMask()) { for (TargetRegisterClass::iterator I = RC->begin(), IE = RC->end(); I != IE; ++I) if (MO.clobbersPhysReg(*I)) { Pred.push_back(MO); Found = true; } } } } return Found; } bool PPCInstrInfo::isPredicable(MachineInstr &MI) const { unsigned OpC = MI.getOpcode(); switch (OpC) { default: return false; case PPC::B: case PPC::BLR: case PPC::BLR8: case PPC::BCTR: case PPC::BCTR8: case PPC::BCTRL: case PPC::BCTRL8: return true; } } bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, unsigned &SrcReg2, int &Mask, int &Value) const { unsigned Opc = MI.getOpcode(); switch (Opc) { default: return false; case PPC::CMPWI: case PPC::CMPLWI: case PPC::CMPDI: case PPC::CMPLDI: SrcReg = MI.getOperand(1).getReg(); SrcReg2 = 0; Value = MI.getOperand(2).getImm(); Mask = 0xFFFF; return true; case PPC::CMPW: case PPC::CMPLW: case PPC::CMPD: case PPC::CMPLD: case PPC::FCMPUS: case PPC::FCMPUD: SrcReg = MI.getOperand(1).getReg(); SrcReg2 = MI.getOperand(2).getReg(); return true; } } bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int Mask, int Value, const MachineRegisterInfo *MRI) const { if (DisableCmpOpt) return false; int OpC = CmpInstr.getOpcode(); unsigned CRReg = CmpInstr.getOperand(0).getReg(); // FP record forms set CR1 based on the execption status bits, not a // comparison with zero. if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) return false; // The record forms set the condition register based on a signed comparison // with zero (so says the ISA manual). This is not as straightforward as it // seems, however, because this is always a 64-bit comparison on PPC64, even // for instructions that are 32-bit in nature (like slw for example). // So, on PPC32, for unsigned comparisons, we can use the record forms only // for equality checks (as those don't depend on the sign). On PPC64, // we are restricted to equality for unsigned 64-bit comparisons and for // signed 32-bit comparisons the applicability is more restricted. bool isPPC64 = Subtarget.isPPC64(); bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; // Get the unique definition of SrcReg. MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); if (!MI) return false; int MIOpC = MI->getOpcode(); bool equalityOnly = false; bool noSub = false; if (isPPC64) { if (is32BitSignedCompare) { // We can perform this optimization only if MI is sign-extending. if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { noSub = true; } else return false; } else if (is32BitUnsignedCompare) { // 32-bit rotate and mask instructions are zero extending only if MB <= ME bool isZeroExtendingRotate = (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo || MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo) && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm(); // We can perform this optimization, equality only, if MI is // zero-extending. if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || MIOpC == PPC::SLW || MIOpC == PPC::SLWo || MIOpC == PPC::SRW || MIOpC == PPC::SRWo || isZeroExtendingRotate) { noSub = true; equalityOnly = true; } else return false; } else equalityOnly = is64BitUnsignedCompare; } else equalityOnly = is32BitUnsignedCompare; if (equalityOnly) { // We need to check the uses of the condition register in order to reject // non-equality comparisons. for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); I != IE; ++I) { MachineInstr *UseMI = &*I; if (UseMI->getOpcode() == PPC::BCC) { unsigned Pred = UseMI->getOperand(0).getImm(); if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) return false; } else if (UseMI->getOpcode() == PPC::ISEL || UseMI->getOpcode() == PPC::ISEL8) { unsigned SubIdx = UseMI->getOperand(3).getSubReg(); if (SubIdx != PPC::sub_eq) return false; } else return false; } } MachineBasicBlock::iterator I = CmpInstr; // Scan forward to find the first use of the compare. for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; ++I) { bool FoundUse = false; for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); J != JE; ++J) if (&*J == &*I) { FoundUse = true; break; } if (FoundUse) break; } // There are two possible candidates which can be changed to set CR[01]. // One is MI, the other is a SUB instruction. // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). MachineInstr *Sub = nullptr; if (SrcReg2 != 0) // MI is not a candidate for CMPrr. MI = nullptr; // FIXME: Conservatively refuse to convert an instruction which isn't in the // same BB as the comparison. This is to allow the check below to avoid calls // (and other explicit clobbers); instead we should really check for these // more explicitly (in at least a few predecessors). else if (MI->getParent() != CmpInstr.getParent() || Value != 0) { // PPC does not have a record-form SUBri. return false; } // Search for Sub. const TargetRegisterInfo *TRI = &getRegisterInfo(); --I; // Get ready to iterate backward from CmpInstr. MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); for (; I != E && !noSub; --I) { const MachineInstr &Instr = *I; unsigned IOpC = Instr.getOpcode(); if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || Instr.readsRegister(PPC::CR0, TRI))) // This instruction modifies or uses the record condition register after // the one we want to change. While we could do this transformation, it // would likely not be profitable. This transformation removes one // instruction, and so even forcing RA to generate one move probably // makes it unprofitable. return false; // Check whether CmpInstr can be made redundant by the current instruction. if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || OpC == PPC::CMPD || OpC == PPC::CMPLD) && (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && ((Instr.getOperand(1).getReg() == SrcReg && Instr.getOperand(2).getReg() == SrcReg2) || (Instr.getOperand(1).getReg() == SrcReg2 && Instr.getOperand(2).getReg() == SrcReg))) { Sub = &*I; break; } if (I == B) // The 'and' is below the comparison instruction. return false; } // Return false if no candidates exist. if (!MI && !Sub) return false; // The single candidate is called MI. if (!MI) MI = Sub; int NewOpC = -1; MIOpC = MI->getOpcode(); if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) NewOpC = MIOpC; else { NewOpC = PPC::getRecordFormOpcode(MIOpC); if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) NewOpC = MIOpC; } // FIXME: On the non-embedded POWER architectures, only some of the record // forms are fast, and we should use only the fast ones. // The defining instruction has a record form (or is already a record // form). It is possible, however, that we'll need to reverse the condition // code of the users. if (NewOpC == -1) return false; SmallVector, 4> PredsToUpdate; SmallVector, 4> SubRegsToUpdate; // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP // needs to be updated to be based on SUB. Push the condition code // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the // condition code of these operands will be modified. bool ShouldSwap = false; if (Sub) { ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && Sub->getOperand(2).getReg() == SrcReg; // The operands to subf are the opposite of sub, so only in the fixed-point // case, invert the order. ShouldSwap = !ShouldSwap; } if (ShouldSwap) for (MachineRegisterInfo::use_instr_iterator I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); I != IE; ++I) { MachineInstr *UseMI = &*I; if (UseMI->getOpcode() == PPC::BCC) { PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); assert((!equalityOnly || Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && "Invalid predicate for equality-only optimization"); PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), PPC::getSwappedPredicate(Pred))); } else if (UseMI->getOpcode() == PPC::ISEL || UseMI->getOpcode() == PPC::ISEL8) { unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); assert((!equalityOnly || NewSubReg == PPC::sub_eq) && "Invalid CR bit for equality-only optimization"); if (NewSubReg == PPC::sub_lt) NewSubReg = PPC::sub_gt; else if (NewSubReg == PPC::sub_gt) NewSubReg = PPC::sub_lt; SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), NewSubReg)); } else // We need to abort on a user we don't understand. return false; } // Create a new virtual register to hold the value of the CR set by the // record-form instruction. If the instruction was not previously in // record form, then set the kill flag on the CR. CmpInstr.eraseFromParent(); MachineBasicBlock::iterator MII = MI; BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), get(TargetOpcode::COPY), CRReg) .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); // Even if CR0 register were dead before, it is alive now since the // instruction we just built uses it. MI->clearRegisterDeads(PPC::CR0); if (MIOpC != NewOpC) { // We need to be careful here: we're replacing one instruction with // another, and we need to make sure that we get all of the right // implicit uses and defs. On the other hand, the caller may be holding // an iterator to this instruction, and so we can't delete it (this is // specifically the case if this is the instruction directly after the // compare). const MCInstrDesc &NewDesc = get(NewOpC); MI->setDesc(NewDesc); if (NewDesc.ImplicitDefs) for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs(); *ImpDefs; ++ImpDefs) if (!MI->definesRegister(*ImpDefs)) MI->addOperand(*MI->getParent()->getParent(), MachineOperand::CreateReg(*ImpDefs, true, true)); if (NewDesc.ImplicitUses) for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses(); *ImpUses; ++ImpUses) if (!MI->readsRegister(*ImpUses)) MI->addOperand(*MI->getParent()->getParent(), MachineOperand::CreateReg(*ImpUses, false, true)); } assert(MI->definesRegister(PPC::CR0) && "Record-form instruction does not define cr0?"); // Modify the condition code of operands in OperandsToUpdate. // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); return true; } /// GetInstSize - Return the number of bytes of code the specified /// instruction may be. This returns the maximum number of bytes. /// unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { unsigned Opcode = MI.getOpcode(); if (Opcode == PPC::INLINEASM) { const MachineFunction *MF = MI.getParent()->getParent(); const char *AsmStr = MI.getOperand(0).getSymbolName(); return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); } else if (Opcode == TargetOpcode::STACKMAP) { return MI.getOperand(1).getImm(); } else if (Opcode == TargetOpcode::PATCHPOINT) { PatchPointOpers Opers(&MI); return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm(); } else { const MCInstrDesc &Desc = get(Opcode); return Desc.getSize(); } } std::pair PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { const unsigned Mask = PPCII::MO_ACCESS_MASK; return std::make_pair(TF & Mask, TF & ~Mask); } ArrayRef> PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { using namespace PPCII; static const std::pair TargetFlags[] = { {MO_LO, "ppc-lo"}, {MO_HA, "ppc-ha"}, {MO_TPREL_LO, "ppc-tprel-lo"}, {MO_TPREL_HA, "ppc-tprel-ha"}, {MO_DTPREL_LO, "ppc-dtprel-lo"}, {MO_TLSLD_LO, "ppc-tlsld-lo"}, {MO_TOC_LO, "ppc-toc-lo"}, {MO_TLS, "ppc-tls"}}; return makeArrayRef(TargetFlags); } ArrayRef> PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { using namespace PPCII; static const std::pair TargetFlags[] = { {MO_PLT, "ppc-plt"}, {MO_PIC_FLAG, "ppc-pic"}, {MO_NLP_FLAG, "ppc-nlp"}, {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}}; return makeArrayRef(TargetFlags); } bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { switch (MI.getOpcode()) { case TargetOpcode::LOAD_STACK_GUARD: { assert(Subtarget.isTargetLinux() && "Only Linux target is expected to contain LOAD_STACK_GUARD"); const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); MachineInstrBuilder(*MI.getParent()->getParent(), MI) .addImm(Offset) .addReg(Reg); return true; } } return false; }