//===-- APInt.cpp - Implement APInt class ---------------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Sheng Zhou and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a class to represent arbitrary precision integral // constant values. // //===----------------------------------------------------------------------===// #include "llvm/ADT/APInt.h" #include "llvm/DerivedTypes.h" #include "llvm/Support/MathExtras.h" #include #include using namespace llvm; // A utility function for allocating memory, checking for allocation failures, // and ensuring the contents is zeroed. inline static uint64_t* getClearedMemory(uint32_t numWords) { uint64_t * result = new uint64_t[numWords]; assert(result && "APInt memory allocation fails!"); memset(result, 0, numWords * sizeof(uint64_t)); return result; } // A utility function for allocating memory and checking for allocation failure. inline static uint64_t* getMemory(uint32_t numWords) { uint64_t * result = new uint64_t[numWords]; assert(result && "APInt memory allocation fails!"); return result; } APInt::APInt(uint32_t numBits, uint64_t val) : BitWidth(numBits) { assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small"); assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large"); if (isSingleWord()) VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth)); else { pVal = getClearedMemory(getNumWords()); pVal[0] = val; } } APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[]) : BitWidth(numBits) { assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small"); assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large"); assert(bigVal && "Null pointer detected!"); if (isSingleWord()) VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth)); else { pVal = getMemory(getNumWords()); // Calculate the actual length of bigVal[]. uint32_t maxN = std::max(numWords, getNumWords()); uint32_t minN = std::min(numWords, getNumWords()); memcpy(pVal, bigVal, (minN - 1) * APINT_WORD_SIZE); pVal[minN-1] = bigVal[minN-1] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD)); if (maxN == getNumWords()) memset(pVal+numWords, 0, (getNumWords() - numWords) * APINT_WORD_SIZE); } } /// @brief Create a new APInt by translating the char array represented /// integer value. APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen, uint8_t radix) { fromString(numbits, StrStart, slen, radix); } /// @brief Create a new APInt by translating the string represented /// integer value. APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix) { assert(!Val.empty() && "String empty?"); fromString(numbits, Val.c_str(), Val.size(), radix); } /// @brief Copy constructor APInt::APInt(const APInt& APIVal) : BitWidth(APIVal.BitWidth) { if (isSingleWord()) VAL = APIVal.VAL; else { pVal = getMemory(getNumWords()); memcpy(pVal, APIVal.pVal, getNumWords() * APINT_WORD_SIZE); } } APInt::~APInt() { if (!isSingleWord() && pVal) delete[] pVal; } /// @brief Copy assignment operator. Create a new object from the given /// APInt one by initialization. APInt& APInt::operator=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) VAL = RHS.VAL; else memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); return *this; } /// @brief Assignment operator. Assigns a common case integer value to /// the APInt. APInt& APInt::operator=(uint64_t RHS) { if (isSingleWord()) VAL = RHS; else { pVal[0] = RHS; memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); } return *this; } /// add_1 - This function adds a single "digit" integer, y, to the multiple /// "digit" integer array, x[]. x[] is modified to reflect the addition and /// 1 is returned if there is a carry out, otherwise 0 is returned. /// @returns the carry of the addition. static uint64_t add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) { for (uint32_t i = 0; i < len; ++i) { dest[i] = y + x[i]; if (dest[i] < y) y = 1; else { y = 0; break; } } return y; } /// @brief Prefix increment operator. Increments the APInt by one. APInt& APInt::operator++() { if (isSingleWord()) ++VAL; else add_1(pVal, pVal, getNumWords(), 1); clearUnusedBits(); return *this; } /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from /// the multi-digit integer array, x[], propagating the borrowed 1 value until /// no further borrowing is neeeded or it runs out of "digits" in x. The result /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. /// In other words, if y > x then this function returns 1, otherwise 0. static uint64_t sub_1(uint64_t x[], uint32_t len, uint64_t y) { for (uint32_t i = 0; i < len; ++i) { uint64_t X = x[i]; x[i] -= y; if (y > X) y = 1; // We have to "borrow 1" from next "digit" else { y = 0; // No need to borrow break; // Remaining digits are unchanged so exit early } } return y; } /// @brief Prefix decrement operator. Decrements the APInt by one. APInt& APInt::operator--() { if (isSingleWord()) --VAL; else sub_1(pVal, getNumWords(), 1); clearUnusedBits(); return *this; } /// add - This function adds the integer array x[] by integer array /// y[] and returns the carry. static uint64_t add(uint64_t dest[], uint64_t x[], uint64_t y[], uint32_t len) { uint32_t carry = 0; for (uint32_t i = 0; i< len; ++i) { carry += x[i]; dest[i] = carry + y[i]; carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0); } return carry; } /// @brief Addition assignment operator. Adds this APInt by the given APInt& /// RHS and assigns the result to this APInt. APInt& APInt::operator+=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) VAL += RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; else { if (RHS.isSingleWord()) add_1(pVal, pVal, getNumWords(), RHS.VAL); else { if (getNumWords() <= RHS.getNumWords()) add(pVal, pVal, RHS.pVal, getNumWords()); else { uint64_t carry = add(pVal, pVal, RHS.pVal, RHS.getNumWords()); add_1(pVal + RHS.getNumWords(), pVal + RHS.getNumWords(), getNumWords() - RHS.getNumWords(), carry); } } } clearUnusedBits(); return *this; } /// sub - This function subtracts the integer array x[] by /// integer array y[], and returns the borrow-out carry. static uint64_t sub(uint64_t dest[], uint64_t x[], uint64_t y[], uint32_t len) { // Carry indicator. uint64_t cy = 0; for (uint32_t i = 0; i < len; ++i) { uint64_t Y = y[i], X = x[i]; Y += cy; cy = Y < cy ? 1 : 0; Y = X - Y; cy += Y > X ? 1 : 0; dest[i] = Y; } return cy; } /// @brief Subtraction assignment operator. Subtracts this APInt by the given /// APInt &RHS and assigns the result to this APInt. APInt& APInt::operator-=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) VAL -= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; else { if (RHS.isSingleWord()) sub_1(pVal, getNumWords(), RHS.VAL); else { if (RHS.getNumWords() < getNumWords()) { uint64_t carry = sub(pVal, pVal, RHS.pVal, RHS.getNumWords()); sub_1(pVal + RHS.getNumWords(), getNumWords() - RHS.getNumWords(), carry); } else sub(pVal, pVal, RHS.pVal, getNumWords()); } } clearUnusedBits(); return *this; } /// mul_1 - This function performs the multiplication operation on a /// large integer (represented as an integer array) and a uint64_t integer. /// @returns the carry of the multiplication. static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) { // Split y into high 32-bit part and low 32-bit part. uint64_t ly = y & 0xffffffffULL, hy = y >> 32; uint64_t carry = 0, lx, hx; for (uint32_t i = 0; i < len; ++i) { lx = x[i] & 0xffffffffULL; hx = x[i] >> 32; // hasCarry - A flag to indicate if has carry. // hasCarry == 0, no carry // hasCarry == 1, has carry // hasCarry == 2, no carry and the calculation result == 0. uint8_t hasCarry = 0; dest[i] = carry + lx * ly; // Determine if the add above introduces carry. hasCarry = (dest[i] < carry) ? 1 : 0; carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + // (2^32 - 1) + 2^32 = 2^64. hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); carry += (lx * hy) & 0xffffffffULL; dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + (carry >> 32) + ((lx * hy) >> 32) + hx * hy; } return carry; } /// mul - This function multiplies integer array x[] by integer array y[] and /// stores the result into integer array dest[]. /// Note the array dest[]'s size should no less than xlen + ylen. static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[], uint32_t ylen) { dest[xlen] = mul_1(dest, x, xlen, y[0]); for (uint32_t i = 1; i < ylen; ++i) { uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; uint64_t carry = 0, lx, hx; for (uint32_t j = 0; j < xlen; ++j) { lx = x[j] & 0xffffffffULL; hx = x[j] >> 32; // hasCarry - A flag to indicate if has carry. // hasCarry == 0, no carry // hasCarry == 1, has carry // hasCarry == 2, no carry and the calculation result == 0. uint8_t hasCarry = 0; uint64_t resul = carry + lx * ly; hasCarry = (resul < carry) ? 1 : 0; carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); carry += (lx * hy) & 0xffffffffULL; resul = (carry << 32) | (resul & 0xffffffffULL); dest[i+j] += resul; carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + ((lx * hy) >> 32) + hx * hy; } dest[i+xlen] = carry; } } /// @brief Multiplication assignment operator. Multiplies this APInt by the /// given APInt& RHS and assigns the result to this APInt. APInt& APInt::operator*=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) VAL *= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; else { // one-based first non-zero bit position. uint32_t first = getActiveBits(); uint32_t xlen = !first ? 0 : whichWord(first - 1) + 1; if (!xlen) return *this; else if (RHS.isSingleWord()) mul_1(pVal, pVal, xlen, RHS.VAL); else { first = RHS.getActiveBits(); uint32_t ylen = !first ? 0 : whichWord(first - 1) + 1; if (!ylen) { memset(pVal, 0, getNumWords() * APINT_WORD_SIZE); return *this; } uint64_t *dest = getMemory(xlen+ylen); mul(dest, pVal, xlen, RHS.pVal, ylen); memcpy(pVal, dest, ((xlen + ylen >= getNumWords()) ? getNumWords() : xlen + ylen) * APINT_WORD_SIZE); delete[] dest; } } clearUnusedBits(); return *this; } /// @brief Bitwise AND assignment operator. Performs bitwise AND operation on /// this APInt and the given APInt& RHS, assigns the result to this APInt. APInt& APInt::operator&=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) { VAL &= RHS.VAL; return *this; } uint32_t numWords = getNumWords(); for (uint32_t i = 0; i < numWords; ++i) pVal[i] &= RHS.pVal[i]; return *this; } /// @brief Bitwise OR assignment operator. Performs bitwise OR operation on /// this APInt and the given APInt& RHS, assigns the result to this APInt. APInt& APInt::operator|=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) { VAL |= RHS.VAL; return *this; } uint32_t numWords = getNumWords(); for (uint32_t i = 0; i < numWords; ++i) pVal[i] |= RHS.pVal[i]; return *this; } /// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on /// this APInt and the given APInt& RHS, assigns the result to this APInt. APInt& APInt::operator^=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) { VAL ^= RHS.VAL; return *this; } uint32_t numWords = getNumWords(); for (uint32_t i = 0; i < numWords; ++i) pVal[i] ^= RHS.pVal[i]; return *this; } /// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt /// and the given APInt& RHS. APInt APInt::operator&(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(getBitWidth(), VAL & RHS.VAL); APInt Result(*this); uint32_t numWords = getNumWords(); for (uint32_t i = 0; i < numWords; ++i) Result.pVal[i] &= RHS.pVal[i]; return Result; } /// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt /// and the given APInt& RHS. APInt APInt::operator|(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(getBitWidth(), VAL | RHS.VAL); APInt Result(*this); uint32_t numWords = getNumWords(); for (uint32_t i = 0; i < numWords; ++i) Result.pVal[i] |= RHS.pVal[i]; return Result; } /// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt /// and the given APInt& RHS. APInt APInt::operator^(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(getBitWidth(), VAL ^ RHS.VAL); APInt Result(*this); uint32_t numWords = getNumWords(); for (uint32_t i = 0; i < numWords; ++i) Result.pVal[i] ^= RHS.pVal[i]; return Result; } /// @brief Logical negation operator. Performs logical negation operation on /// this APInt. bool APInt::operator !() const { if (isSingleWord()) return !VAL; for (uint32_t i = 0; i < getNumWords(); ++i) if (pVal[i]) return false; return true; } /// @brief Multiplication operator. Multiplies this APInt by the given APInt& /// RHS. APInt APInt::operator*(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); APInt API(RHS); API *= *this; API.clearUnusedBits(); return API; } /// @brief Addition operator. Adds this APInt by the given APInt& RHS. APInt APInt::operator+(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); APInt API(*this); API += RHS; API.clearUnusedBits(); return API; } /// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS APInt APInt::operator-(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); APInt API(*this); API -= RHS; return API; } /// @brief Array-indexing support. bool APInt::operator[](uint32_t bitPosition) const { return (maskBit(bitPosition) & (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0; } /// @brief Equality operator. Compare this APInt with the given APInt& RHS /// for the validity of the equality relationship. bool APInt::operator==(const APInt& RHS) const { uint32_t n1 = getActiveBits(); uint32_t n2 = RHS.getActiveBits(); if (n1 != n2) return false; else if (isSingleWord()) return VAL == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); else { if (n1 <= APINT_BITS_PER_WORD) return pVal[0] == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); for (int i = whichWord(n1 - 1); i >= 0; --i) if (pVal[i] != RHS.pVal[i]) return false; } return true; } /// @brief Equality operator. Compare this APInt with the given uint64_t value /// for the validity of the equality relationship. bool APInt::operator==(uint64_t Val) const { if (isSingleWord()) return VAL == Val; else { uint32_t n = getActiveBits(); if (n <= APINT_BITS_PER_WORD) return pVal[0] == Val; else return false; } } /// @brief Unsigned less than comparison bool APInt::ult(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); if (isSingleWord()) return VAL < RHS.VAL; else { uint32_t n1 = getActiveBits(); uint32_t n2 = RHS.getActiveBits(); if (n1 < n2) return true; else if (n2 < n1) return false; else if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) return pVal[0] < RHS.pVal[0]; for (int i = whichWord(n1 - 1); i >= 0; --i) { if (pVal[i] > RHS.pVal[i]) return false; else if (pVal[i] < RHS.pVal[i]) return true; } } return false; } /// @brief Signed less than comparison bool APInt::slt(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); if (isSingleWord()) { int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth); return lhsSext < rhsSext; } APInt lhs(*this); APInt rhs(*this); bool lhsNegative = false; bool rhsNegative = false; if (lhs[BitWidth-1]) { lhsNegative = true; lhs.flip(); lhs++; } if (rhs[BitWidth-1]) { rhsNegative = true; rhs.flip(); rhs++; } if (lhsNegative) if (rhsNegative) return !lhs.ult(rhs); else return true; else if (rhsNegative) return false; else return lhs.ult(rhs); } /// Set the given bit to 1 whose poition is given as "bitPosition". /// @brief Set a given bit to 1. APInt& APInt::set(uint32_t bitPosition) { if (isSingleWord()) VAL |= maskBit(bitPosition); else pVal[whichWord(bitPosition)] |= maskBit(bitPosition); return *this; } /// @brief Set every bit to 1. APInt& APInt::set() { if (isSingleWord()) VAL = ~0ULL >> (APINT_BITS_PER_WORD - BitWidth); else { for (uint32_t i = 0; i < getNumWords() - 1; ++i) pVal[i] = -1ULL; pVal[getNumWords() - 1] = ~0ULL >> (APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD); } return *this; } /// Set the given bit to 0 whose position is given as "bitPosition". /// @brief Set a given bit to 0. APInt& APInt::clear(uint32_t bitPosition) { if (isSingleWord()) VAL &= ~maskBit(bitPosition); else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); return *this; } /// @brief Set every bit to 0. APInt& APInt::clear() { if (isSingleWord()) VAL = 0; else memset(pVal, 0, getNumWords() * APINT_WORD_SIZE); return *this; } /// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on /// this APInt. APInt APInt::operator~() const { APInt API(*this); API.flip(); return API; } /// @brief Toggle every bit to its opposite value. APInt& APInt::flip() { if (isSingleWord()) VAL = (~(VAL << (APINT_BITS_PER_WORD - BitWidth))) >> (APINT_BITS_PER_WORD - BitWidth); else { uint32_t i = 0; for (; i < getNumWords() - 1; ++i) pVal[i] = ~pVal[i]; uint32_t offset = APINT_BITS_PER_WORD - (BitWidth - APINT_BITS_PER_WORD * (i - 1)); pVal[i] = (~(pVal[i] << offset)) >> offset; } return *this; } /// Toggle a given bit to its opposite value whose position is given /// as "bitPosition". /// @brief Toggles a given bit to its opposite value. APInt& APInt::flip(uint32_t bitPosition) { assert(bitPosition < BitWidth && "Out of the bit-width range!"); if ((*this)[bitPosition]) clear(bitPosition); else set(bitPosition); return *this; } /// to_string - This function translates the APInt into a string. std::string APInt::toString(uint8_t radix, bool wantSigned) const { assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && "Radix should be 2, 8, 10, or 16!"); static const char *digits[] = { "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F" }; std::string result; uint32_t bits_used = getActiveBits(); if (isSingleWord()) { char buf[65]; const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") : (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0))); if (format) { if (wantSigned) { int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >> (APINT_BITS_PER_WORD-BitWidth); sprintf(buf, format, sextVal); } else sprintf(buf, format, VAL); } else { memset(buf, 0, 65); uint64_t v = VAL; while (bits_used) { uint32_t bit = v & 1; bits_used--; buf[bits_used] = digits[bit][0]; v >>=1; } } result = buf; return result; } if (radix != 10) { uint64_t mask = radix - 1; uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : 1); uint32_t nibbles = APINT_BITS_PER_WORD / shift; for (uint32_t i = 0; i < getNumWords(); ++i) { uint64_t value = pVal[i]; for (uint32_t j = 0; j < nibbles; ++j) { result.insert(0, digits[ value & mask ]); value >>= shift; } } return result; } APInt tmp(*this); APInt divisor(tmp.getBitWidth(), 10); APInt zero(tmp.getBitWidth(), 0); size_t insert_at = 0; if (wantSigned && tmp[BitWidth-1]) { // They want to print the signed version and it is a negative value // Flip the bits and add one to turn it into the equivalent positive // value and put a '-' in the result. tmp.flip(); tmp++; result = "-"; insert_at = 1; } if (tmp == 0) result = "0"; else while (tmp.ne(zero)) { APInt APdigit = APIntOps::urem(tmp,divisor); uint32_t digit = APdigit.getValue(); assert(digit < radix && "urem failed"); result.insert(insert_at,digits[digit]); tmp = APIntOps::udiv(tmp, divisor); } return result; } /// getMaxValue - This function returns the largest value /// for an APInt of the specified bit-width and if isSign == true, /// it should be largest signed value, otherwise unsigned value. APInt APInt::getMaxValue(uint32_t numBits, bool isSign) { APInt Result(numBits, 0); Result.set(); if (isSign) Result.clear(numBits - 1); return Result; } /// getMinValue - This function returns the smallest value for /// an APInt of the given bit-width and if isSign == true, /// it should be smallest signed value, otherwise zero. APInt APInt::getMinValue(uint32_t numBits, bool isSign) { APInt Result(numBits, 0); if (isSign) Result.set(numBits - 1); return Result; } /// getAllOnesValue - This function returns an all-ones value for /// an APInt of the specified bit-width. APInt APInt::getAllOnesValue(uint32_t numBits) { return getMaxValue(numBits, false); } /// getNullValue - This function creates an '0' value for an /// APInt of the specified bit-width. APInt APInt::getNullValue(uint32_t numBits) { return getMinValue(numBits, false); } /// HiBits - This function returns the high "numBits" bits of this APInt. APInt APInt::getHiBits(uint32_t numBits) const { return APIntOps::lshr(*this, BitWidth - numBits); } /// LoBits - This function returns the low "numBits" bits of this APInt. APInt APInt::getLoBits(uint32_t numBits) const { return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), BitWidth - numBits); } bool APInt::isPowerOf2() const { return (!!*this) && !(*this & (*this - APInt(BitWidth,1))); } /// countLeadingZeros - This function is a APInt version corresponding to /// llvm/include/llvm/Support/MathExtras.h's function /// countLeadingZeros_{32, 64}. It performs platform optimal form of counting /// the number of zeros from the most significant bit to the first one bit. /// @returns numWord() * 64 if the value is zero. uint32_t APInt::countLeadingZeros() const { if (isSingleWord()) return CountLeadingZeros_64(VAL) - (APINT_BITS_PER_WORD - BitWidth); uint32_t Count = 0; for (uint32_t i = getNumWords(); i > 0u; --i) { uint32_t tmp = CountLeadingZeros_64(pVal[i-1]); Count += tmp; if (tmp != APINT_BITS_PER_WORD) if (i == getNumWords()) Count -= (APINT_BITS_PER_WORD - whichBit(BitWidth)); break; } return Count; } /// countTrailingZeros - This function is a APInt version corresponding to /// llvm/include/llvm/Support/MathExtras.h's function /// countTrailingZeros_{32, 64}. It performs platform optimal form of counting /// the number of zeros from the least significant bit to the first one bit. /// @returns numWord() * 64 if the value is zero. uint32_t APInt::countTrailingZeros() const { if (isSingleWord()) return CountTrailingZeros_64(VAL); APInt Tmp( ~(*this) & ((*this) - APInt(BitWidth,1)) ); return getNumWords() * APINT_BITS_PER_WORD - Tmp.countLeadingZeros(); } /// countPopulation - This function is a APInt version corresponding to /// llvm/include/llvm/Support/MathExtras.h's function /// countPopulation_{32, 64}. It counts the number of set bits in a value. /// @returns 0 if the value is zero. uint32_t APInt::countPopulation() const { if (isSingleWord()) return CountPopulation_64(VAL); uint32_t Count = 0; for (uint32_t i = 0; i < getNumWords(); ++i) Count += CountPopulation_64(pVal[i]); return Count; } /// byteSwap - This function returns a byte-swapped representation of the /// this APInt. APInt APInt::byteSwap() const { assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); if (BitWidth == 16) return APInt(BitWidth, ByteSwap_16(VAL)); else if (BitWidth == 32) return APInt(BitWidth, ByteSwap_32(VAL)); else if (BitWidth == 48) { uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF); Tmp1 = ByteSwap_32(Tmp1); uint64_t Tmp2 = (VAL >> 16) & 0xFFFF; Tmp2 = ByteSwap_16(Tmp2); return APInt(BitWidth, (Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16)); } else if (BitWidth == 64) return APInt(BitWidth, ByteSwap_64(VAL)); else { APInt Result(BitWidth, 0); char *pByte = (char*)Result.pVal; for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) { char Tmp = pByte[i]; pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i]; pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp; } return Result; } } /// GreatestCommonDivisor - This function returns the greatest common /// divisor of the two APInt values using Enclid's algorithm. APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, const APInt& API2) { APInt A = API1, B = API2; while (!!B) { APInt T = B; B = APIntOps::urem(A, B); A = T; } return A; } /// DoubleRoundToAPInt - This function convert a double value to /// a APInt value. APInt llvm::APIntOps::RoundDoubleToAPInt(double Double) { union { double D; uint64_t I; } T; T.D = Double; bool isNeg = T.I >> 63; int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; if (exp < 0) return APInt(64ull, 0u); uint64_t mantissa = ((T.I << 12) >> 12) | (1ULL << 52); if (exp < 52) return isNeg ? -APInt(64u, mantissa >> (52 - exp)) : APInt(64u, mantissa >> (52 - exp)); APInt Tmp(exp + 1, mantissa); Tmp = Tmp.shl(exp - 52); return isNeg ? -Tmp : Tmp; } /// RoundToDouble - This function convert this APInt to a double. /// The layout for double is as following (IEEE Standard 754): /// -------------------------------------- /// | Sign Exponent Fraction Bias | /// |-------------------------------------- | /// | 1[63] 11[62-52] 52[51-00] 1023 | /// -------------------------------------- double APInt::roundToDouble(bool isSigned) const { if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { if (isSigned) { int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); return double(sext); } else return double(VAL); } bool isNeg = isSigned ? (*this)[BitWidth-1] : false; APInt Tmp(isNeg ? -(*this) : (*this)); uint32_t n = Tmp.getActiveBits(); // Exponent when normalized to have decimal point directly after // leading one. This is stored excess 1023 in the exponent bit field. uint64_t exp = n - 1; // Gross overflow. assert(exp <= 1023 && "Infinity value!"); // Number of bits in mantissa including the leading one // equals to 53. uint64_t mantissa; if (n % APINT_BITS_PER_WORD >= 53) mantissa = Tmp.pVal[whichWord(n - 1)] >> (n % APINT_BITS_PER_WORD - 53); else mantissa = (Tmp.pVal[whichWord(n - 1)] << (53 - n % APINT_BITS_PER_WORD)) | (Tmp.pVal[whichWord(n - 1) - 1] >> (11 + n % APINT_BITS_PER_WORD)); // The leading bit of mantissa is implicit, so get rid of it. mantissa &= ~(1ULL << 52); uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; exp += 1023; union { double D; uint64_t I; } T; T.I = sign | (exp << 52) | mantissa; return T.D; } // Truncate to new width. void APInt::trunc(uint32_t width) { assert(width < BitWidth && "Invalid APInt Truncate request"); } // Sign extend to a new width. void APInt::sext(uint32_t width) { assert(width > BitWidth && "Invalid APInt SignExtend request"); } // Zero extend to a new width. void APInt::zext(uint32_t width) { assert(width > BitWidth && "Invalid APInt ZeroExtend request"); } /// Arithmetic right-shift this APInt by shiftAmt. /// @brief Arithmetic right-shift function. APInt APInt::ashr(uint32_t shiftAmt) const { APInt API(*this); if (API.isSingleWord()) API.VAL = (((int64_t(API.VAL) << (APINT_BITS_PER_WORD - API.BitWidth)) >> (APINT_BITS_PER_WORD - API.BitWidth)) >> shiftAmt) & (~uint64_t(0UL) >> (APINT_BITS_PER_WORD - API.BitWidth)); else { if (shiftAmt >= API.BitWidth) { memset(API.pVal, API[API.BitWidth-1] ? 1 : 0, (API.getNumWords()-1) * APINT_WORD_SIZE); API.pVal[API.getNumWords() - 1] = ~uint64_t(0UL) >> (APINT_BITS_PER_WORD - API.BitWidth % APINT_BITS_PER_WORD); } else { uint32_t i = 0; for (; i < API.BitWidth - shiftAmt; ++i) if (API[i+shiftAmt]) API.set(i); else API.clear(i); for (; i < API.BitWidth; ++i) if (API[API.BitWidth-1]) API.set(i); else API.clear(i); } } return API; } /// Logical right-shift this APInt by shiftAmt. /// @brief Logical right-shift function. APInt APInt::lshr(uint32_t shiftAmt) const { APInt API(*this); if (API.isSingleWord()) API.VAL >>= shiftAmt; else { if (shiftAmt >= API.BitWidth) memset(API.pVal, 0, API.getNumWords() * APINT_WORD_SIZE); uint32_t i = 0; for (i = 0; i < API.BitWidth - shiftAmt; ++i) if (API[i+shiftAmt]) API.set(i); else API.clear(i); for (; i < API.BitWidth; ++i) API.clear(i); } return API; } /// Left-shift this APInt by shiftAmt. /// @brief Left-shift function. APInt APInt::shl(uint32_t shiftAmt) const { APInt API(*this); if (API.isSingleWord()) API.VAL <<= shiftAmt; else if (shiftAmt >= API.BitWidth) memset(API.pVal, 0, API.getNumWords() * APINT_WORD_SIZE); else { if (uint32_t offset = shiftAmt / APINT_BITS_PER_WORD) { for (uint32_t i = API.getNumWords() - 1; i > offset - 1; --i) API.pVal[i] = API.pVal[i-offset]; memset(API.pVal, 0, offset * APINT_WORD_SIZE); } shiftAmt %= APINT_BITS_PER_WORD; uint32_t i; for (i = API.getNumWords() - 1; i > 0; --i) API.pVal[i] = (API.pVal[i] << shiftAmt) | (API.pVal[i-1] >> (APINT_BITS_PER_WORD - shiftAmt)); API.pVal[i] <<= shiftAmt; } API.clearUnusedBits(); return API; } /// subMul - This function substracts x[len-1:0] * y from /// dest[offset+len-1:offset], and returns the most significant /// word of the product, minus the borrow-out from the subtraction. static uint32_t subMul(uint32_t dest[], uint32_t offset, uint32_t x[], uint32_t len, uint32_t y) { uint64_t yl = (uint64_t) y & 0xffffffffL; uint32_t carry = 0; uint32_t j = 0; do { uint64_t prod = ((uint64_t) x[j] & 0xffffffffUL) * yl; uint32_t prod_low = (uint32_t) prod; uint32_t prod_high = (uint32_t) (prod >> 32); prod_low += carry; carry = (prod_low < carry ? 1 : 0) + prod_high; uint32_t x_j = dest[offset+j]; prod_low = x_j - prod_low; if (prod_low > x_j) ++carry; dest[offset+j] = prod_low; } while (++j < len); return carry; } /// unitDiv - This function divides N by D, /// and returns (remainder << 32) | quotient. /// Assumes (N >> 32) < D. static uint64_t unitDiv(uint64_t N, uint32_t D) { uint64_t q, r; // q: quotient, r: remainder. uint64_t a1 = N >> 32; // a1: high 32-bit part of N. uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) { q = N / D; r = N % D; } else { // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d uint64_t c = N - ((uint64_t) D << 31); // Divide (c1*2^32 + c0) by d q = c / D; r = c % D; // Add 2^31 to quotient q += 1 << 31; } return (r << 32) | (q & 0xFFFFFFFFl); } /// div - This is basically Knuth's formulation of the classical algorithm. /// Correspondance with Knuth's notation: /// Knuth's u[0:m+n] == zds[nx:0]. /// Knuth's v[1:n] == y[ny-1:0] /// Knuth's n == ny. /// Knuth's m == nx-ny. /// Our nx == Knuth's m+n. /// Could be re-implemented using gmp's mpn_divrem: /// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny). static void div(uint32_t zds[], uint32_t nx, uint32_t y[], uint32_t ny) { uint32_t j = nx; do { // loop over digits of quotient // Knuth's j == our nx-j. // Knuth's u[j:j+n] == our zds[j:j-ny]. uint32_t qhat; // treated as unsigned if (zds[j] == y[ny-1]) qhat = -1U; // 0xffffffff else { uint64_t w = (((uint64_t)(zds[j])) << 32) + ((uint64_t)zds[j-1] & 0xffffffffL); qhat = (uint32_t) unitDiv(w, y[ny-1]); } if (qhat) { uint32_t borrow = subMul(zds, j - ny, y, ny, qhat); uint32_t save = zds[j]; uint64_t num = ((uint64_t)save&0xffffffffL) - ((uint64_t)borrow&0xffffffffL); while (num) { qhat--; uint64_t carry = 0; for (uint32_t i = 0; i < ny; i++) { carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL) + ((uint64_t) y[i] & 0xffffffffL); zds[j-ny+i] = (uint32_t) carry; carry >>= 32; } zds[j] += carry; num = carry - 1; } } zds[j] = qhat; } while (--j >= ny); } /// Unsigned divide this APInt by APInt RHS. /// @brief Unsigned division function for APInt. APInt APInt::udiv(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); // First, deal with the easy case if (isSingleWord()) { assert(RHS.VAL != 0 && "Divide by zero?"); return APInt(BitWidth, VAL / RHS.VAL); } // Make a temporary to hold the result APInt Result(*this); // Get some facts about the LHS and RHS number of bits and words uint32_t rhsBits = RHS.getActiveBits(); uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); assert(rhsWords && "Divided by zero???"); uint32_t lhsBits = Result.getActiveBits(); uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); // Deal with some degenerate cases if (!lhsWords) return Result; // 0 / X == 0 else if (lhsWords < rhsWords || Result.ult(RHS)) // X / Y with X < Y == 0 memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); else if (Result == RHS) { // X / X == 1 memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); Result.pVal[0] = 1; } else if (lhsWords == 1) // All high words are zero, just use native divide Result.pVal[0] /= RHS.pVal[0]; else { // Compute it the hard way .. APInt X(BitWidth, 0); APInt Y(BitWidth, 0); uint32_t nshift = (APINT_BITS_PER_WORD - 1) - ((rhsBits - 1) % APINT_BITS_PER_WORD ); if (nshift) { Y = APIntOps::shl(RHS, nshift); X = APIntOps::shl(Result, nshift); ++lhsWords; } div((uint32_t*)X.pVal, lhsWords * 2 - 1, (uint32_t*)(Y.isSingleWord()? &Y.VAL : Y.pVal), rhsWords*2); memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); memcpy(Result.pVal, X.pVal + rhsWords, (lhsWords - rhsWords) * APINT_WORD_SIZE); } return Result; } /// Unsigned remainder operation on APInt. /// @brief Function for unsigned remainder operation. APInt APInt::urem(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) { assert(RHS.VAL != 0 && "Remainder by zero?"); return APInt(BitWidth, VAL % RHS.VAL); } // Make a temporary to hold the result APInt Result(*this); // Get some facts about the RHS uint32_t rhsBits = RHS.getActiveBits(); uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); assert(rhsWords && "Performing remainder operation by zero ???"); // Get some facts about the LHS uint32_t lhsBits = Result.getActiveBits(); uint32_t lhsWords = !lhsBits ? 0 : (Result.whichWord(lhsBits - 1) + 1); // Check the degenerate cases if (lhsWords == 0) // 0 % Y == 0 memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); else if (lhsWords < rhsWords || Result.ult(RHS)) // X % Y == X iff X < Y return Result; else if (Result == RHS) // X % X == 0; memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); else if (lhsWords == 1) // All high words are zero, just use native remainder Result.pVal[0] %= RHS.pVal[0]; else { // Do it the hard way APInt X((lhsWords+1)*APINT_BITS_PER_WORD, 0); APInt Y(rhsWords*APINT_BITS_PER_WORD, 0); uint32_t nshift = (APINT_BITS_PER_WORD - 1) - (rhsBits - 1) % APINT_BITS_PER_WORD; if (nshift) { APIntOps::shl(Y, nshift); APIntOps::shl(X, nshift); } div((uint32_t*)X.pVal, rhsWords*2-1, (uint32_t*)(Y.isSingleWord()? &Y.VAL : Y.pVal), rhsWords*2); memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); for (uint32_t i = 0; i < rhsWords-1; ++i) Result.pVal[i] = (X.pVal[i] >> nshift) | (X.pVal[i+1] << (APINT_BITS_PER_WORD - nshift)); Result.pVal[rhsWords-1] = X.pVal[rhsWords-1] >> nshift; } return Result; } /// @brief Converts a char array into an integer. void APInt::fromString(uint32_t numbits, const char *StrStart, uint32_t slen, uint8_t radix) { assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && "Radix should be 2, 8, 10, or 16!"); assert(StrStart && "String is null?"); uint32_t size = 0; // If the radix is a power of 2, read the input // from most significant to least significant. if ((radix & (radix - 1)) == 0) { uint32_t nextBitPos = 0; uint32_t bits_per_digit = radix / 8 + 2; uint64_t resDigit = 0; BitWidth = slen * bits_per_digit; if (getNumWords() > 1) pVal = getMemory(getNumWords()); for (int i = slen - 1; i >= 0; --i) { uint64_t digit = StrStart[i] - '0'; resDigit |= digit << nextBitPos; nextBitPos += bits_per_digit; if (nextBitPos >= APINT_BITS_PER_WORD) { if (isSingleWord()) { VAL = resDigit; break; } pVal[size++] = resDigit; nextBitPos -= APINT_BITS_PER_WORD; resDigit = digit >> (bits_per_digit - nextBitPos); } } if (!isSingleWord() && size <= getNumWords()) pVal[size] = resDigit; } else { // General case. The radix is not a power of 2. // For 10-radix, the max value of 64-bit integer is 18446744073709551615, // and its digits number is 20. const uint32_t chars_per_word = 20; if (slen < chars_per_word || (slen == chars_per_word && // In case the value <= 2^64 - 1 strcmp(StrStart, "18446744073709551615") <= 0)) { BitWidth = APINT_BITS_PER_WORD; VAL = strtoull(StrStart, 0, 10); } else { // In case the value > 2^64 - 1 BitWidth = (slen / chars_per_word + 1) * APINT_BITS_PER_WORD; pVal = getClearedMemory(getNumWords()); uint32_t str_pos = 0; while (str_pos < slen) { uint32_t chunk = slen - str_pos; if (chunk > chars_per_word - 1) chunk = chars_per_word - 1; uint64_t resDigit = StrStart[str_pos++] - '0'; uint64_t big_base = radix; while (--chunk > 0) { resDigit = resDigit * radix + StrStart[str_pos++] - '0'; big_base *= radix; } uint64_t carry; if (!size) carry = resDigit; else { carry = mul_1(pVal, pVal, size, big_base); carry += add_1(pVal, pVal, size, resDigit); } if (carry) pVal[size++] = carry; } } } }