//===-- X86AsmPrinter.cpp - Convert X86 LLVM IR to X86 assembly -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file the shared super class printer that converts from our internal // representation of machine-dependent LLVM code to Intel and AT&T format // assembly language. // This printer is the output mechanism used by `llc'. // //===----------------------------------------------------------------------===// #include "X86ATTAsmPrinter.h" #include "X86IntelAsmPrinter.h" #include "X86Subtarget.h" #include "X86.h" #include "llvm/Constants.h" #include "llvm/Module.h" #include "llvm/Type.h" #include "llvm/Assembly/Writer.h" #include "llvm/Support/Mangler.h" #include "llvm/Support/CommandLine.h" using namespace llvm; using namespace x86; Statistic<> llvm::x86::EmittedInsts("asm-printer", "Number of machine instrs printed"); enum AsmWriterFlavorTy { att, intel }; cl::opt AsmWriterFlavor("x86-asm-syntax", cl::desc("Choose style of code to emit from X86 backend:"), cl::values( clEnumVal(att, " Emit AT&T-style assembly"), clEnumVal(intel, " Emit Intel-style assembly"), clEnumValEnd), cl::init(att)); /// doInitialization bool X86SharedAsmPrinter::doInitialization(Module &M) { const X86Subtarget *Subtarget = &TM.getSubtarget(); forDarwin = false; PrivateGlobalPrefix = ".L"; switch (Subtarget->TargetType) { case X86Subtarget::isDarwin: AlignmentIsInBytes = false; GlobalPrefix = "_"; Data64bitsDirective = 0; // we can't emit a 64-bit unit ZeroDirective = "\t.space\t"; // ".space N" emits N zeros. PrivateGlobalPrefix = "L"; // Marker for constant pool idxs ConstantPoolSection = "\t.const\n"; LCOMMDirective = "\t.lcomm\t"; COMMDirectiveTakesAlignment = false; HasDotTypeDotSizeDirective = false; forDarwin = true; StaticCtorsSection = ".mod_init_func"; StaticDtorsSection = ".mod_term_func"; InlineAsmStart = InlineAsmEnd = ""; // Don't use #APP/#NO_APP break; case X86Subtarget::isCygwin: GlobalPrefix = "_"; COMMDirectiveTakesAlignment = false; HasDotTypeDotSizeDirective = false; break; case X86Subtarget::isWindows: GlobalPrefix = "_"; HasDotTypeDotSizeDirective = false; break; default: break; } if (forDarwin) { // Emit initial debug information. DW.BeginModule(M); } return AsmPrinter::doInitialization(M); } bool X86SharedAsmPrinter::doFinalization(Module &M) { const TargetData &TD = TM.getTargetData(); // Print out module-level global variables here. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { if (!I->hasInitializer()) continue; // External global require no code // Check to see if this is a special global used by LLVM, if so, emit it. if (I->hasAppendingLinkage() && EmitSpecialLLVMGlobal(I)) continue; std::string name = Mang->getValueName(I); Constant *C = I->getInitializer(); unsigned Size = TD.getTypeSize(C->getType()); unsigned Align = getPreferredAlignmentLog(I); if (C->isNullValue() && /* FIXME: Verify correct */ (I->hasInternalLinkage() || I->hasWeakLinkage() || I->hasLinkOnceLinkage() || (forDarwin && I->hasExternalLinkage() && !I->hasSection()))) { if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. if (I->hasExternalLinkage()) { O << "\t.globl\t" << name << "\n"; O << "\t.zerofill __DATA__, __common, " << name << ", " << Size << ", " << Align; } else { SwitchSection(".data", I); if (LCOMMDirective != NULL) { if (I->hasInternalLinkage()) { O << LCOMMDirective << name << "," << Size; if (forDarwin) O << "," << (AlignmentIsInBytes ? (1 << Align) : Align); } else O << COMMDirective << name << "," << Size; } else { if (I->hasInternalLinkage()) O << "\t.local\t" << name << "\n"; O << COMMDirective << name << "," << Size; if (COMMDirectiveTakesAlignment) O << "," << (AlignmentIsInBytes ? (1 << Align) : Align); } } O << "\t\t" << CommentString << " " << I->getName() << "\n"; } else { switch (I->getLinkage()) { case GlobalValue::LinkOnceLinkage: case GlobalValue::WeakLinkage: if (forDarwin) { O << "\t.globl " << name << "\n" << "\t.weak_definition " << name << "\n"; SwitchSection(".section __DATA,__datacoal_nt,coalesced", I); } else { O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n"; O << "\t.weak " << name << "\n"; } break; case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of // their name or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << "\t.globl " << name << "\n"; // FALL THROUGH case GlobalValue::InternalLinkage: SwitchSection(".data", I); break; default: assert(0 && "Unknown linkage type!"); } EmitAlignment(Align, I); O << name << ":\t\t\t\t" << CommentString << " " << I->getName() << "\n"; if (HasDotTypeDotSizeDirective) O << "\t.size " << name << ", " << Size << "\n"; EmitGlobalConstant(C); O << '\n'; } } if (forDarwin) { SwitchSection("", 0); // Output stubs for dynamically-linked functions unsigned j = 1; for (std::set::iterator i = FnStubs.begin(), e = FnStubs.end(); i != e; ++i, ++j) { SwitchSection(".section __IMPORT,__jump_table,symbol_stubs," "self_modifying_code+pure_instructions,5", 0); O << "L" << *i << "$stub:\n"; O << "\t.indirect_symbol " << *i << "\n"; O << "\thlt ; hlt ; hlt ; hlt ; hlt\n"; } O << "\n"; // Output stubs for external and common global variables. if (GVStubs.begin() != GVStubs.end()) SwitchSection(".section __IMPORT,__pointers,non_lazy_symbol_pointers", 0); for (std::set::iterator i = GVStubs.begin(), e = GVStubs.end(); i != e; ++i) { O << "L" << *i << "$non_lazy_ptr:\n"; O << "\t.indirect_symbol " << *i << "\n"; O << "\t.long\t0\n"; } // Emit initial debug information. DW.EndModule(M); // Funny Darwin hack: This flag tells the linker that no global symbols // contain code that falls through to other global symbols (e.g. the obvious // implementation of multiple entry points). If this doesn't occur, the // linker can safely perform dead code stripping. Since LLVM never generates // code that does this, it is always safe to set. O << "\t.subsections_via_symbols\n"; } AsmPrinter::doFinalization(M); return false; // success } /// createX86CodePrinterPass - Returns a pass that prints the X86 assembly code /// for a MachineFunction to the given output stream, using the given target /// machine description. /// FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){ switch (AsmWriterFlavor) { default: assert(0 && "Unknown asm flavor!"); case intel: return new X86IntelAsmPrinter(o, tm); case att: return new X86ATTAsmPrinter(o, tm); } }