//====--------------- lib/Support/BlockFrequency.cpp -----------*- C++ -*-====// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements Block Frequency class. // //===----------------------------------------------------------------------===// #include "llvm/Support/BranchProbability.h" #include "llvm/Support/BlockFrequency.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; namespace { /// mult96bit - Multiply FREQ by N and store result in W array. void mult96bit(uint64_t freq, uint32_t N, uint64_t W[2]) { uint64_t u0 = freq & UINT32_MAX; uint64_t u1 = freq >> 32; // Represent 96-bit value as w[2]:w[1]:w[0]; uint32_t w[3] = { 0, 0, 0 }; uint64_t t = u0 * N; uint64_t k = t >> 32; w[0] = t; t = u1 * N + k; w[1] = t; w[2] = t >> 32; // W[1] - higher bits. // W[0] - lower bits. W[0] = w[0] + ((uint64_t) w[1] << 32); W[1] = w[2]; } /// div96bit - Divide 96-bit value stored in W array by D. /// Return 64-bit quotient, saturated to UINT64_MAX on overflow. uint64_t div96bit(uint64_t W[2], uint32_t D) { uint64_t y = W[0]; uint64_t x = W[1]; int i; // This long division algorithm automatically saturates on overflow. for (i = 1; i <= 64 && x; ++i) { uint32_t t = (int)x >> 31; x = (x << 1) | (y >> 63); y = y << 1; if ((x | t) >= D) { x -= D; ++y; } } return y << (64 - i + 1); } } void BlockFrequency::scale(uint32_t N, uint32_t D) { assert(D != 0 && "Division by zero"); // Calculate Frequency * N. uint64_t MulLo = (Frequency & UINT32_MAX) * N; uint64_t MulHi = (Frequency >> 32) * N; uint64_t MulRes = (MulHi << 32) + MulLo; // If the product fits in 64 bits, just use built-in division. if (MulHi <= UINT32_MAX && MulRes <= MulLo) { Frequency = MulRes / D; return; } // Product overflowed, use 96-bit operations. // 96-bit value represented as W[1]:W[0]. uint64_t W[2]; mult96bit(Frequency, N, W); Frequency = div96bit(W, D); return; } BlockFrequency &BlockFrequency::operator*=(const BranchProbability &Prob) { scale(Prob.getNumerator(), Prob.getDenominator()); return *this; } const BlockFrequency BlockFrequency::operator*(const BranchProbability &Prob) const { BlockFrequency Freq(Frequency); Freq *= Prob; return Freq; } BlockFrequency &BlockFrequency::operator/=(const BranchProbability &Prob) { scale(Prob.getDenominator(), Prob.getNumerator()); return *this; } BlockFrequency BlockFrequency::operator/(const BranchProbability &Prob) const { BlockFrequency Freq(Frequency); Freq /= Prob; return Freq; } BlockFrequency &BlockFrequency::operator+=(const BlockFrequency &Freq) { uint64_t Before = Freq.Frequency; Frequency += Freq.Frequency; // If overflow, set frequency to the maximum value. if (Frequency < Before) Frequency = UINT64_MAX; return *this; } const BlockFrequency BlockFrequency::operator+(const BlockFrequency &Prob) const { BlockFrequency Freq(Frequency); Freq += Prob; return Freq; } void BlockFrequency::print(raw_ostream &OS) const { // Convert fixed-point number to decimal. OS << Frequency / getEntryFrequency() << "."; uint64_t Rem = Frequency % getEntryFrequency(); uint64_t Eps = 1; do { Rem *= 10; Eps *= 10; OS << Rem / getEntryFrequency(); Rem = Rem % getEntryFrequency(); } while (Rem >= Eps/2); } namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const BlockFrequency &Freq) { Freq.print(OS); return OS; } }