//===-- TargetPassConfig.cpp - Target independent code generation passes --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines interfaces to access the target independent code // generation passes provided by the LLVM backend. // //===---------------------------------------------------------------------===// #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/CFLAndersAliasAnalysis.h" #include "llvm/Analysis/CFLSteensAliasAnalysis.h" #include "llvm/Analysis/CallGraphSCCPass.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/ScopedNoAliasAA.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/TypeBasedAliasAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/RegisterUsageInfo.h" #include "llvm/IR/IRPrintingPasses.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Verifier.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/SymbolRewriter.h" using namespace llvm; static cl::opt DisablePostRASched("disable-post-ra", cl::Hidden, cl::desc("Disable Post Regalloc Scheduler")); static cl::opt DisableBranchFold("disable-branch-fold", cl::Hidden, cl::desc("Disable branch folding")); static cl::opt DisableTailDuplicate("disable-tail-duplicate", cl::Hidden, cl::desc("Disable tail duplication")); static cl::opt DisableEarlyTailDup("disable-early-taildup", cl::Hidden, cl::desc("Disable pre-register allocation tail duplication")); static cl::opt DisableBlockPlacement("disable-block-placement", cl::Hidden, cl::desc("Disable probability-driven block placement")); static cl::opt EnableBlockPlacementStats("enable-block-placement-stats", cl::Hidden, cl::desc("Collect probability-driven block placement stats")); static cl::opt DisableSSC("disable-ssc", cl::Hidden, cl::desc("Disable Stack Slot Coloring")); static cl::opt DisableMachineDCE("disable-machine-dce", cl::Hidden, cl::desc("Disable Machine Dead Code Elimination")); static cl::opt DisableEarlyIfConversion("disable-early-ifcvt", cl::Hidden, cl::desc("Disable Early If-conversion")); static cl::opt DisableMachineLICM("disable-machine-licm", cl::Hidden, cl::desc("Disable Machine LICM")); static cl::opt DisableMachineCSE("disable-machine-cse", cl::Hidden, cl::desc("Disable Machine Common Subexpression Elimination")); static cl::opt OptimizeRegAlloc( "optimize-regalloc", cl::Hidden, cl::desc("Enable optimized register allocation compilation path.")); static cl::opt DisablePostRAMachineLICM("disable-postra-machine-licm", cl::Hidden, cl::desc("Disable Machine LICM")); static cl::opt DisableMachineSink("disable-machine-sink", cl::Hidden, cl::desc("Disable Machine Sinking")); static cl::opt DisableLSR("disable-lsr", cl::Hidden, cl::desc("Disable Loop Strength Reduction Pass")); static cl::opt DisableConstantHoisting("disable-constant-hoisting", cl::Hidden, cl::desc("Disable ConstantHoisting")); static cl::opt DisableCGP("disable-cgp", cl::Hidden, cl::desc("Disable Codegen Prepare")); static cl::opt DisableCopyProp("disable-copyprop", cl::Hidden, cl::desc("Disable Copy Propagation pass")); static cl::opt DisablePartialLibcallInlining("disable-partial-libcall-inlining", cl::Hidden, cl::desc("Disable Partial Libcall Inlining")); static cl::opt EnableImplicitNullChecks( "enable-implicit-null-checks", cl::desc("Fold null checks into faulting memory operations"), cl::init(false)); static cl::opt PrintLSR("print-lsr-output", cl::Hidden, cl::desc("Print LLVM IR produced by the loop-reduce pass")); static cl::opt PrintISelInput("print-isel-input", cl::Hidden, cl::desc("Print LLVM IR input to isel pass")); static cl::opt PrintGCInfo("print-gc", cl::Hidden, cl::desc("Dump garbage collector data")); static cl::opt VerifyMachineCode("verify-machineinstrs", cl::Hidden, cl::desc("Verify generated machine code"), cl::init(false), cl::ZeroOrMore); static cl::opt EnableMachineOutliner("enable-machine-outliner", cl::Hidden, cl::desc("Enable machine outliner")); // Enable or disable FastISel. Both options are needed, because // FastISel is enabled by default with -fast, and we wish to be // able to enable or disable fast-isel independently from -O0. static cl::opt EnableFastISelOption("fast-isel", cl::Hidden, cl::desc("Enable the \"fast\" instruction selector")); static cl::opt EnableGlobalISel("global-isel", cl::Hidden, cl::desc("Enable the \"global\" instruction selector")); static cl::opt PrintMachineInstrs("print-machineinstrs", cl::ValueOptional, cl::desc("Print machine instrs"), cl::value_desc("pass-name"), cl::init("option-unspecified")); static cl::opt EnableGlobalISelAbort( "global-isel-abort", cl::Hidden, cl::desc("Enable abort calls when \"global\" instruction selection " "fails to lower/select an instruction: 0 disable the abort, " "1 enable the abort, and " "2 disable the abort but emit a diagnostic on failure"), cl::init(1)); // Temporary option to allow experimenting with MachineScheduler as a post-RA // scheduler. Targets can "properly" enable this with // substitutePass(&PostRASchedulerID, &PostMachineSchedulerID). // Targets can return true in targetSchedulesPostRAScheduling() and // insert a PostRA scheduling pass wherever it wants. cl::opt MISchedPostRA("misched-postra", cl::Hidden, cl::desc("Run MachineScheduler post regalloc (independent of preRA sched)")); // Experimental option to run live interval analysis early. static cl::opt EarlyLiveIntervals("early-live-intervals", cl::Hidden, cl::desc("Run live interval analysis earlier in the pipeline")); // Experimental option to use CFL-AA in codegen enum class CFLAAType { None, Steensgaard, Andersen, Both }; static cl::opt UseCFLAA( "use-cfl-aa-in-codegen", cl::init(CFLAAType::None), cl::Hidden, cl::desc("Enable the new, experimental CFL alias analysis in CodeGen"), cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"), clEnumValN(CFLAAType::Steensgaard, "steens", "Enable unification-based CFL-AA"), clEnumValN(CFLAAType::Andersen, "anders", "Enable inclusion-based CFL-AA"), clEnumValN(CFLAAType::Both, "both", "Enable both variants of CFL-AA"))); /// Allow standard passes to be disabled by command line options. This supports /// simple binary flags that either suppress the pass or do nothing. /// i.e. -disable-mypass=false has no effect. /// These should be converted to boolOrDefault in order to use applyOverride. static IdentifyingPassPtr applyDisable(IdentifyingPassPtr PassID, bool Override) { if (Override) return IdentifyingPassPtr(); return PassID; } /// Allow standard passes to be disabled by the command line, regardless of who /// is adding the pass. /// /// StandardID is the pass identified in the standard pass pipeline and provided /// to addPass(). It may be a target-specific ID in the case that the target /// directly adds its own pass, but in that case we harmlessly fall through. /// /// TargetID is the pass that the target has configured to override StandardID. /// /// StandardID may be a pseudo ID. In that case TargetID is the name of the real /// pass to run. This allows multiple options to control a single pass depending /// on where in the pipeline that pass is added. static IdentifyingPassPtr overridePass(AnalysisID StandardID, IdentifyingPassPtr TargetID) { if (StandardID == &PostRASchedulerID) return applyDisable(TargetID, DisablePostRASched); if (StandardID == &BranchFolderPassID) return applyDisable(TargetID, DisableBranchFold); if (StandardID == &TailDuplicateID) return applyDisable(TargetID, DisableTailDuplicate); if (StandardID == &TargetPassConfig::EarlyTailDuplicateID) return applyDisable(TargetID, DisableEarlyTailDup); if (StandardID == &MachineBlockPlacementID) return applyDisable(TargetID, DisableBlockPlacement); if (StandardID == &StackSlotColoringID) return applyDisable(TargetID, DisableSSC); if (StandardID == &DeadMachineInstructionElimID) return applyDisable(TargetID, DisableMachineDCE); if (StandardID == &EarlyIfConverterID) return applyDisable(TargetID, DisableEarlyIfConversion); if (StandardID == &MachineLICMID) return applyDisable(TargetID, DisableMachineLICM); if (StandardID == &MachineCSEID) return applyDisable(TargetID, DisableMachineCSE); if (StandardID == &TargetPassConfig::PostRAMachineLICMID) return applyDisable(TargetID, DisablePostRAMachineLICM); if (StandardID == &MachineSinkingID) return applyDisable(TargetID, DisableMachineSink); if (StandardID == &MachineCopyPropagationID) return applyDisable(TargetID, DisableCopyProp); return TargetID; } //===---------------------------------------------------------------------===// /// TargetPassConfig //===---------------------------------------------------------------------===// INITIALIZE_PASS(TargetPassConfig, "targetpassconfig", "Target Pass Configuration", false, false) char TargetPassConfig::ID = 0; // Pseudo Pass IDs. char TargetPassConfig::EarlyTailDuplicateID = 0; char TargetPassConfig::PostRAMachineLICMID = 0; namespace { struct InsertedPass { AnalysisID TargetPassID; IdentifyingPassPtr InsertedPassID; bool VerifyAfter; bool PrintAfter; InsertedPass(AnalysisID TargetPassID, IdentifyingPassPtr InsertedPassID, bool VerifyAfter, bool PrintAfter) : TargetPassID(TargetPassID), InsertedPassID(InsertedPassID), VerifyAfter(VerifyAfter), PrintAfter(PrintAfter) {} Pass *getInsertedPass() const { assert(InsertedPassID.isValid() && "Illegal Pass ID!"); if (InsertedPassID.isInstance()) return InsertedPassID.getInstance(); Pass *NP = Pass::createPass(InsertedPassID.getID()); assert(NP && "Pass ID not registered"); return NP; } }; } namespace llvm { class PassConfigImpl { public: // List of passes explicitly substituted by this target. Normally this is // empty, but it is a convenient way to suppress or replace specific passes // that are part of a standard pass pipeline without overridding the entire // pipeline. This mechanism allows target options to inherit a standard pass's // user interface. For example, a target may disable a standard pass by // default by substituting a pass ID of zero, and the user may still enable // that standard pass with an explicit command line option. DenseMap TargetPasses; /// Store the pairs of of which the second pass /// is inserted after each instance of the first one. SmallVector InsertedPasses; }; } // namespace llvm // Out of line virtual method. TargetPassConfig::~TargetPassConfig() { delete Impl; } // Out of line constructor provides default values for pass options and // registers all common codegen passes. TargetPassConfig::TargetPassConfig(LLVMTargetMachine &TM, PassManagerBase &pm) : ImmutablePass(ID), PM(&pm), Started(true), Stopped(false), AddingMachinePasses(false), TM(&TM), Impl(nullptr), Initialized(false), DisableVerify(false), EnableTailMerge(true), RequireCodeGenSCCOrder(false) { Impl = new PassConfigImpl(); // Register all target independent codegen passes to activate their PassIDs, // including this pass itself. initializeCodeGen(*PassRegistry::getPassRegistry()); // Also register alias analysis passes required by codegen passes. initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); // Substitute Pseudo Pass IDs for real ones. substitutePass(&EarlyTailDuplicateID, &TailDuplicateID); substitutePass(&PostRAMachineLICMID, &MachineLICMID); if (StringRef(PrintMachineInstrs.getValue()).equals("")) TM.Options.PrintMachineCode = true; if (TM.Options.EnableIPRA) setRequiresCodeGenSCCOrder(); } CodeGenOpt::Level TargetPassConfig::getOptLevel() const { return TM->getOptLevel(); } /// Insert InsertedPassID pass after TargetPassID. void TargetPassConfig::insertPass(AnalysisID TargetPassID, IdentifyingPassPtr InsertedPassID, bool VerifyAfter, bool PrintAfter) { assert(((!InsertedPassID.isInstance() && TargetPassID != InsertedPassID.getID()) || (InsertedPassID.isInstance() && TargetPassID != InsertedPassID.getInstance()->getPassID())) && "Insert a pass after itself!"); Impl->InsertedPasses.emplace_back(TargetPassID, InsertedPassID, VerifyAfter, PrintAfter); } /// createPassConfig - Create a pass configuration object to be used by /// addPassToEmitX methods for generating a pipeline of CodeGen passes. /// /// Targets may override this to extend TargetPassConfig. TargetPassConfig *LLVMTargetMachine::createPassConfig(PassManagerBase &PM) { return new TargetPassConfig(*this, PM); } TargetPassConfig::TargetPassConfig() : ImmutablePass(ID), PM(nullptr) { report_fatal_error("Trying to construct TargetPassConfig without a target " "machine. Scheduling a CodeGen pass without a target " "triple set?"); } // Helper to verify the analysis is really immutable. void TargetPassConfig::setOpt(bool &Opt, bool Val) { assert(!Initialized && "PassConfig is immutable"); Opt = Val; } void TargetPassConfig::substitutePass(AnalysisID StandardID, IdentifyingPassPtr TargetID) { Impl->TargetPasses[StandardID] = TargetID; } IdentifyingPassPtr TargetPassConfig::getPassSubstitution(AnalysisID ID) const { DenseMap::const_iterator I = Impl->TargetPasses.find(ID); if (I == Impl->TargetPasses.end()) return ID; return I->second; } bool TargetPassConfig::isPassSubstitutedOrOverridden(AnalysisID ID) const { IdentifyingPassPtr TargetID = getPassSubstitution(ID); IdentifyingPassPtr FinalPtr = overridePass(ID, TargetID); return !FinalPtr.isValid() || FinalPtr.isInstance() || FinalPtr.getID() != ID; } /// Add a pass to the PassManager if that pass is supposed to be run. If the /// Started/Stopped flags indicate either that the compilation should start at /// a later pass or that it should stop after an earlier pass, then do not add /// the pass. Finally, compare the current pass against the StartAfter /// and StopAfter options and change the Started/Stopped flags accordingly. void TargetPassConfig::addPass(Pass *P, bool verifyAfter, bool printAfter) { assert(!Initialized && "PassConfig is immutable"); // Cache the Pass ID here in case the pass manager finds this pass is // redundant with ones already scheduled / available, and deletes it. // Fundamentally, once we add the pass to the manager, we no longer own it // and shouldn't reference it. AnalysisID PassID = P->getPassID(); if (StartBefore == PassID) Started = true; if (StopBefore == PassID) Stopped = true; if (Started && !Stopped) { std::string Banner; // Construct banner message before PM->add() as that may delete the pass. if (AddingMachinePasses && (printAfter || verifyAfter)) Banner = std::string("After ") + std::string(P->getPassName()); PM->add(P); if (AddingMachinePasses) { if (printAfter) addPrintPass(Banner); if (verifyAfter) addVerifyPass(Banner); } // Add the passes after the pass P if there is any. for (auto IP : Impl->InsertedPasses) { if (IP.TargetPassID == PassID) addPass(IP.getInsertedPass(), IP.VerifyAfter, IP.PrintAfter); } } else { delete P; } if (StopAfter == PassID) Stopped = true; if (StartAfter == PassID) Started = true; if (Stopped && !Started) report_fatal_error("Cannot stop compilation after pass that is not run"); } /// Add a CodeGen pass at this point in the pipeline after checking for target /// and command line overrides. /// /// addPass cannot return a pointer to the pass instance because is internal the /// PassManager and the instance we create here may already be freed. AnalysisID TargetPassConfig::addPass(AnalysisID PassID, bool verifyAfter, bool printAfter) { IdentifyingPassPtr TargetID = getPassSubstitution(PassID); IdentifyingPassPtr FinalPtr = overridePass(PassID, TargetID); if (!FinalPtr.isValid()) return nullptr; Pass *P; if (FinalPtr.isInstance()) P = FinalPtr.getInstance(); else { P = Pass::createPass(FinalPtr.getID()); if (!P) llvm_unreachable("Pass ID not registered"); } AnalysisID FinalID = P->getPassID(); addPass(P, verifyAfter, printAfter); // Ends the lifetime of P. return FinalID; } void TargetPassConfig::printAndVerify(const std::string &Banner) { addPrintPass(Banner); addVerifyPass(Banner); } void TargetPassConfig::addPrintPass(const std::string &Banner) { if (TM->shouldPrintMachineCode()) PM->add(createMachineFunctionPrinterPass(dbgs(), Banner)); } void TargetPassConfig::addVerifyPass(const std::string &Banner) { bool Verify = VerifyMachineCode; #ifdef EXPENSIVE_CHECKS if (VerifyMachineCode == cl::BOU_UNSET) Verify = TM->isMachineVerifierClean(); #endif if (Verify) PM->add(createMachineVerifierPass(Banner)); } /// Add common target configurable passes that perform LLVM IR to IR transforms /// following machine independent optimization. void TargetPassConfig::addIRPasses() { switch (UseCFLAA) { case CFLAAType::Steensgaard: addPass(createCFLSteensAAWrapperPass()); break; case CFLAAType::Andersen: addPass(createCFLAndersAAWrapperPass()); break; case CFLAAType::Both: addPass(createCFLAndersAAWrapperPass()); addPass(createCFLSteensAAWrapperPass()); break; default: break; } // Basic AliasAnalysis support. // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that // BasicAliasAnalysis wins if they disagree. This is intended to help // support "obvious" type-punning idioms. addPass(createTypeBasedAAWrapperPass()); addPass(createScopedNoAliasAAWrapperPass()); addPass(createBasicAAWrapperPass()); // Before running any passes, run the verifier to determine if the input // coming from the front-end and/or optimizer is valid. if (!DisableVerify) addPass(createVerifierPass()); // Run loop strength reduction before anything else. if (getOptLevel() != CodeGenOpt::None && !DisableLSR) { addPass(createLoopStrengthReducePass()); if (PrintLSR) addPass(createPrintFunctionPass(dbgs(), "\n\n*** Code after LSR ***\n")); } // Run GC lowering passes for builtin collectors // TODO: add a pass insertion point here addPass(createGCLoweringPass()); addPass(createShadowStackGCLoweringPass()); // Make sure that no unreachable blocks are instruction selected. addPass(createUnreachableBlockEliminationPass()); // Prepare expensive constants for SelectionDAG. if (getOptLevel() != CodeGenOpt::None && !DisableConstantHoisting) addPass(createConstantHoistingPass()); if (getOptLevel() != CodeGenOpt::None && !DisablePartialLibcallInlining) addPass(createPartiallyInlineLibCallsPass()); // Insert calls to mcount-like functions. addPass(createCountingFunctionInserterPass()); // Add scalarization of target's unsupported masked memory intrinsics pass. // the unsupported intrinsic will be replaced with a chain of basic blocks, // that stores/loads element one-by-one if the appropriate mask bit is set. addPass(createScalarizeMaskedMemIntrinPass()); // Expand reduction intrinsics into shuffle sequences if the target wants to. addPass(createExpandReductionsPass()); } /// Turn exception handling constructs into something the code generators can /// handle. void TargetPassConfig::addPassesToHandleExceptions() { const MCAsmInfo *MCAI = TM->getMCAsmInfo(); assert(MCAI && "No MCAsmInfo"); switch (MCAI->getExceptionHandlingType()) { case ExceptionHandling::SjLj: // SjLj piggy-backs on dwarf for this bit. The cleanups done apply to both // Dwarf EH prepare needs to be run after SjLj prepare. Otherwise, // catch info can get misplaced when a selector ends up more than one block // removed from the parent invoke(s). This could happen when a landing // pad is shared by multiple invokes and is also a target of a normal // edge from elsewhere. addPass(createSjLjEHPreparePass()); LLVM_FALLTHROUGH; case ExceptionHandling::DwarfCFI: case ExceptionHandling::ARM: addPass(createDwarfEHPass()); break; case ExceptionHandling::WinEH: // We support using both GCC-style and MSVC-style exceptions on Windows, so // add both preparation passes. Each pass will only actually run if it // recognizes the personality function. addPass(createWinEHPass()); addPass(createDwarfEHPass()); break; case ExceptionHandling::None: addPass(createLowerInvokePass()); // The lower invoke pass may create unreachable code. Remove it. addPass(createUnreachableBlockEliminationPass()); break; } } /// Add pass to prepare the LLVM IR for code generation. This should be done /// before exception handling preparation passes. void TargetPassConfig::addCodeGenPrepare() { if (getOptLevel() != CodeGenOpt::None && !DisableCGP) addPass(createCodeGenPreparePass()); addPass(createRewriteSymbolsPass()); } /// Add common passes that perform LLVM IR to IR transforms in preparation for /// instruction selection. void TargetPassConfig::addISelPrepare() { addPreISel(); // Force codegen to run according to the callgraph. if (requiresCodeGenSCCOrder()) addPass(new DummyCGSCCPass); // Add both the safe stack and the stack protection passes: each of them will // only protect functions that have corresponding attributes. addPass(createSafeStackPass()); addPass(createStackProtectorPass()); if (PrintISelInput) addPass(createPrintFunctionPass( dbgs(), "\n\n*** Final LLVM Code input to ISel ***\n")); // All passes which modify the LLVM IR are now complete; run the verifier // to ensure that the IR is valid. if (!DisableVerify) addPass(createVerifierPass()); } bool TargetPassConfig::addCoreISelPasses() { // Enable FastISel with -fast, but allow that to be overridden. TM->setO0WantsFastISel(EnableFastISelOption != cl::BOU_FALSE); if (EnableFastISelOption == cl::BOU_TRUE || (TM->getOptLevel() == CodeGenOpt::None && TM->getO0WantsFastISel())) TM->setFastISel(true); // Ask the target for an isel. // Enable GlobalISel if the target wants to, but allow that to be overriden. if (EnableGlobalISel == cl::BOU_TRUE || (EnableGlobalISel == cl::BOU_UNSET && isGlobalISelEnabled())) { if (addIRTranslator()) return true; addPreLegalizeMachineIR(); if (addLegalizeMachineIR()) return true; // Before running the register bank selector, ask the target if it // wants to run some passes. addPreRegBankSelect(); if (addRegBankSelect()) return true; addPreGlobalInstructionSelect(); if (addGlobalInstructionSelect()) return true; // Pass to reset the MachineFunction if the ISel failed. addPass(createResetMachineFunctionPass( reportDiagnosticWhenGlobalISelFallback(), isGlobalISelAbortEnabled())); // Provide a fallback path when we do not want to abort on // not-yet-supported input. if (!isGlobalISelAbortEnabled() && addInstSelector()) return true; } else if (addInstSelector()) return true; return false; } bool TargetPassConfig::addISelPasses() { if (TM->Options.EmulatedTLS) addPass(createLowerEmuTLSPass()); addPass(createPreISelIntrinsicLoweringPass()); addPass(createTargetTransformInfoWrapperPass(TM->getTargetIRAnalysis())); addIRPasses(); addCodeGenPrepare(); addPassesToHandleExceptions(); addISelPrepare(); return addCoreISelPasses(); } /// -regalloc=... command line option. static FunctionPass *useDefaultRegisterAllocator() { return nullptr; } static cl::opt > RegAlloc("regalloc", cl::init(&useDefaultRegisterAllocator), cl::desc("Register allocator to use")); /// Add the complete set of target-independent postISel code generator passes. /// /// This can be read as the standard order of major LLVM CodeGen stages. Stages /// with nontrivial configuration or multiple passes are broken out below in /// add%Stage routines. /// /// Any TargetPassConfig::addXX routine may be overriden by the Target. The /// addPre/Post methods with empty header implementations allow injecting /// target-specific fixups just before or after major stages. Additionally, /// targets have the flexibility to change pass order within a stage by /// overriding default implementation of add%Stage routines below. Each /// technique has maintainability tradeoffs because alternate pass orders are /// not well supported. addPre/Post works better if the target pass is easily /// tied to a common pass. But if it has subtle dependencies on multiple passes, /// the target should override the stage instead. /// /// TODO: We could use a single addPre/Post(ID) hook to allow pass injection /// before/after any target-independent pass. But it's currently overkill. void TargetPassConfig::addMachinePasses() { AddingMachinePasses = true; // Insert a machine instr printer pass after the specified pass. if (!StringRef(PrintMachineInstrs.getValue()).equals("") && !StringRef(PrintMachineInstrs.getValue()).equals("option-unspecified")) { const PassRegistry *PR = PassRegistry::getPassRegistry(); const PassInfo *TPI = PR->getPassInfo(PrintMachineInstrs.getValue()); const PassInfo *IPI = PR->getPassInfo(StringRef("machineinstr-printer")); assert (TPI && IPI && "Pass ID not registered!"); const char *TID = (const char *)(TPI->getTypeInfo()); const char *IID = (const char *)(IPI->getTypeInfo()); insertPass(TID, IID); } // Print the instruction selected machine code... printAndVerify("After Instruction Selection"); if (TM->Options.EnableIPRA) addPass(createRegUsageInfoPropPass()); // Expand pseudo-instructions emitted by ISel. addPass(&ExpandISelPseudosID); // Add passes that optimize machine instructions in SSA form. if (getOptLevel() != CodeGenOpt::None) { addMachineSSAOptimization(); } else { // If the target requests it, assign local variables to stack slots relative // to one another and simplify frame index references where possible. addPass(&LocalStackSlotAllocationID, false); } // Run pre-ra passes. addPreRegAlloc(); // Run register allocation and passes that are tightly coupled with it, // including phi elimination and scheduling. if (getOptimizeRegAlloc()) addOptimizedRegAlloc(createRegAllocPass(true)); else { if (RegAlloc != &useDefaultRegisterAllocator && RegAlloc != &createFastRegisterAllocator) report_fatal_error("Must use fast (default) register allocator for unoptimized regalloc."); addFastRegAlloc(createRegAllocPass(false)); } // Run post-ra passes. addPostRegAlloc(); // Insert prolog/epilog code. Eliminate abstract frame index references... if (getOptLevel() != CodeGenOpt::None) addPass(&ShrinkWrapID); // Prolog/Epilog inserter needs a TargetMachine to instantiate. But only // do so if it hasn't been disabled, substituted, or overridden. if (!isPassSubstitutedOrOverridden(&PrologEpilogCodeInserterID)) addPass(createPrologEpilogInserterPass()); /// Add passes that optimize machine instructions after register allocation. if (getOptLevel() != CodeGenOpt::None) addMachineLateOptimization(); // Expand pseudo instructions before second scheduling pass. addPass(&ExpandPostRAPseudosID); // Run pre-sched2 passes. addPreSched2(); if (EnableImplicitNullChecks) addPass(&ImplicitNullChecksID); // Second pass scheduler. // Let Target optionally insert this pass by itself at some other // point. if (getOptLevel() != CodeGenOpt::None && !TM->targetSchedulesPostRAScheduling()) { if (MISchedPostRA) addPass(&PostMachineSchedulerID); else addPass(&PostRASchedulerID); } // GC if (addGCPasses()) { if (PrintGCInfo) addPass(createGCInfoPrinter(dbgs()), false, false); } // Basic block placement. if (getOptLevel() != CodeGenOpt::None) addBlockPlacement(); addPreEmitPass(); if (TM->Options.EnableIPRA) // Collect register usage information and produce a register mask of // clobbered registers, to be used to optimize call sites. addPass(createRegUsageInfoCollector()); addPass(&FuncletLayoutID, false); addPass(&StackMapLivenessID, false); addPass(&LiveDebugValuesID, false); // Insert before XRay Instrumentation. addPass(&FEntryInserterID, false); addPass(&XRayInstrumentationID, false); addPass(&PatchableFunctionID, false); if (EnableMachineOutliner) PM->add(createMachineOutlinerPass()); AddingMachinePasses = false; } /// Add passes that optimize machine instructions in SSA form. void TargetPassConfig::addMachineSSAOptimization() { // Pre-ra tail duplication. addPass(&EarlyTailDuplicateID); // Optimize PHIs before DCE: removing dead PHI cycles may make more // instructions dead. addPass(&OptimizePHIsID, false); // This pass merges large allocas. StackSlotColoring is a different pass // which merges spill slots. addPass(&StackColoringID, false); // If the target requests it, assign local variables to stack slots relative // to one another and simplify frame index references where possible. addPass(&LocalStackSlotAllocationID, false); // With optimization, dead code should already be eliminated. However // there is one known exception: lowered code for arguments that are only // used by tail calls, where the tail calls reuse the incoming stack // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll). addPass(&DeadMachineInstructionElimID); // Allow targets to insert passes that improve instruction level parallelism, // like if-conversion. Such passes will typically need dominator trees and // loop info, just like LICM and CSE below. addILPOpts(); addPass(&MachineLICMID, false); addPass(&MachineCSEID, false); // Coalesce basic blocks with the same branch condition addPass(&BranchCoalescingID); addPass(&MachineSinkingID); addPass(&PeepholeOptimizerID); // Clean-up the dead code that may have been generated by peephole // rewriting. addPass(&DeadMachineInstructionElimID); } //===---------------------------------------------------------------------===// /// Register Allocation Pass Configuration //===---------------------------------------------------------------------===// bool TargetPassConfig::getOptimizeRegAlloc() const { switch (OptimizeRegAlloc) { case cl::BOU_UNSET: return getOptLevel() != CodeGenOpt::None; case cl::BOU_TRUE: return true; case cl::BOU_FALSE: return false; } llvm_unreachable("Invalid optimize-regalloc state"); } /// RegisterRegAlloc's global Registry tracks allocator registration. MachinePassRegistry RegisterRegAlloc::Registry; /// A dummy default pass factory indicates whether the register allocator is /// overridden on the command line. static llvm::once_flag InitializeDefaultRegisterAllocatorFlag; static RegisterRegAlloc defaultRegAlloc("default", "pick register allocator based on -O option", useDefaultRegisterAllocator); static void initializeDefaultRegisterAllocatorOnce() { RegisterRegAlloc::FunctionPassCtor Ctor = RegisterRegAlloc::getDefault(); if (!Ctor) { Ctor = RegAlloc; RegisterRegAlloc::setDefault(RegAlloc); } } /// Instantiate the default register allocator pass for this target for either /// the optimized or unoptimized allocation path. This will be added to the pass /// manager by addFastRegAlloc in the unoptimized case or addOptimizedRegAlloc /// in the optimized case. /// /// A target that uses the standard regalloc pass order for fast or optimized /// allocation may still override this for per-target regalloc /// selection. But -regalloc=... always takes precedence. FunctionPass *TargetPassConfig::createTargetRegisterAllocator(bool Optimized) { if (Optimized) return createGreedyRegisterAllocator(); else return createFastRegisterAllocator(); } /// Find and instantiate the register allocation pass requested by this target /// at the current optimization level. Different register allocators are /// defined as separate passes because they may require different analysis. /// /// This helper ensures that the regalloc= option is always available, /// even for targets that override the default allocator. /// /// FIXME: When MachinePassRegistry register pass IDs instead of function ptrs, /// this can be folded into addPass. FunctionPass *TargetPassConfig::createRegAllocPass(bool Optimized) { // Initialize the global default. llvm::call_once(InitializeDefaultRegisterAllocatorFlag, initializeDefaultRegisterAllocatorOnce); RegisterRegAlloc::FunctionPassCtor Ctor = RegisterRegAlloc::getDefault(); if (Ctor != useDefaultRegisterAllocator) return Ctor(); // With no -regalloc= override, ask the target for a regalloc pass. return createTargetRegisterAllocator(Optimized); } /// Return true if the default global register allocator is in use and /// has not be overriden on the command line with '-regalloc=...' bool TargetPassConfig::usingDefaultRegAlloc() const { return RegAlloc.getNumOccurrences() == 0; } /// Add the minimum set of target-independent passes that are required for /// register allocation. No coalescing or scheduling. void TargetPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { addPass(&PHIEliminationID, false); addPass(&TwoAddressInstructionPassID, false); if (RegAllocPass) addPass(RegAllocPass); } /// Add standard target-independent passes that are tightly coupled with /// optimized register allocation, including coalescing, machine instruction /// scheduling, and register allocation itself. void TargetPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { addPass(&DetectDeadLanesID, false); addPass(&ProcessImplicitDefsID, false); // LiveVariables currently requires pure SSA form. // // FIXME: Once TwoAddressInstruction pass no longer uses kill flags, // LiveVariables can be removed completely, and LiveIntervals can be directly // computed. (We still either need to regenerate kill flags after regalloc, or // preferably fix the scavenger to not depend on them). addPass(&LiveVariablesID, false); // Edge splitting is smarter with machine loop info. addPass(&MachineLoopInfoID, false); addPass(&PHIEliminationID, false); // Eventually, we want to run LiveIntervals before PHI elimination. if (EarlyLiveIntervals) addPass(&LiveIntervalsID, false); addPass(&TwoAddressInstructionPassID, false); addPass(&RegisterCoalescerID); // The machine scheduler may accidentally create disconnected components // when moving subregister definitions around, avoid this by splitting them to // separate vregs before. Splitting can also improve reg. allocation quality. addPass(&RenameIndependentSubregsID); // PreRA instruction scheduling. addPass(&MachineSchedulerID); if (RegAllocPass) { // Add the selected register allocation pass. addPass(RegAllocPass); // Allow targets to change the register assignments before rewriting. addPreRewrite(); // Finally rewrite virtual registers. addPass(&VirtRegRewriterID); // Perform stack slot coloring and post-ra machine LICM. // // FIXME: Re-enable coloring with register when it's capable of adding // kill markers. addPass(&StackSlotColoringID); // Run post-ra machine LICM to hoist reloads / remats. // // FIXME: can this move into MachineLateOptimization? addPass(&PostRAMachineLICMID); } } //===---------------------------------------------------------------------===// /// Post RegAlloc Pass Configuration //===---------------------------------------------------------------------===// /// Add passes that optimize machine instructions after register allocation. void TargetPassConfig::addMachineLateOptimization() { // Branch folding must be run after regalloc and prolog/epilog insertion. addPass(&BranchFolderPassID); // Tail duplication. // Note that duplicating tail just increases code size and degrades // performance for targets that require Structured Control Flow. // In addition it can also make CFG irreducible. Thus we disable it. if (!TM->requiresStructuredCFG()) addPass(&TailDuplicateID); // Copy propagation. addPass(&MachineCopyPropagationID); } /// Add standard GC passes. bool TargetPassConfig::addGCPasses() { addPass(&GCMachineCodeAnalysisID, false); return true; } /// Add standard basic block placement passes. void TargetPassConfig::addBlockPlacement() { if (addPass(&MachineBlockPlacementID)) { // Run a separate pass to collect block placement statistics. if (EnableBlockPlacementStats) addPass(&MachineBlockPlacementStatsID); } } //===---------------------------------------------------------------------===// /// GlobalISel Configuration //===---------------------------------------------------------------------===// bool TargetPassConfig::isGlobalISelEnabled() const { return false; } bool TargetPassConfig::isGlobalISelAbortEnabled() const { return EnableGlobalISelAbort == 1; } bool TargetPassConfig::reportDiagnosticWhenGlobalISelFallback() const { return EnableGlobalISelAbort == 2; }