//===- LazyValueInfo.cpp - Value constraint analysis ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interface for lazy computation of value constraint // information. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "lazy-value-info" #include "llvm/Analysis/LazyValueInfo.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/CFG.h" #include "llvm/Support/ConstantRange.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/ValueHandle.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" using namespace llvm; char LazyValueInfo::ID = 0; INITIALIZE_PASS(LazyValueInfo, "lazy-value-info", "Lazy Value Information Analysis", false, true); namespace llvm { FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); } } //===----------------------------------------------------------------------===// // LVILatticeVal //===----------------------------------------------------------------------===// /// LVILatticeVal - This is the information tracked by LazyValueInfo for each /// value. /// /// FIXME: This is basically just for bringup, this can be made a lot more rich /// in the future. /// namespace { class LVILatticeVal { enum LatticeValueTy { /// undefined - This LLVM Value has no known value yet. undefined, /// constant - This LLVM Value has a specific constant value. constant, /// notconstant - This LLVM value is known to not have the specified value. notconstant, /// constantrange constantrange, /// overdefined - This instruction is not known to be constant, and we know /// it has a value. overdefined }; /// Val: This stores the current lattice value along with the Constant* for /// the constant if this is a 'constant' or 'notconstant' value. LatticeValueTy Tag; Constant *Val; ConstantRange Range; public: LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {} static LVILatticeVal get(Constant *C) { LVILatticeVal Res; if (ConstantInt *CI = dyn_cast(C)) Res.markConstantRange(ConstantRange(CI->getValue(), CI->getValue()+1)); else if (!isa(C)) Res.markConstant(C); return Res; } static LVILatticeVal getNot(Constant *C) { LVILatticeVal Res; if (ConstantInt *CI = dyn_cast(C)) Res.markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue())); else Res.markNotConstant(C); return Res; } static LVILatticeVal getRange(ConstantRange CR) { LVILatticeVal Res; Res.markConstantRange(CR); return Res; } bool isUndefined() const { return Tag == undefined; } bool isConstant() const { return Tag == constant; } bool isNotConstant() const { return Tag == notconstant; } bool isConstantRange() const { return Tag == constantrange; } bool isOverdefined() const { return Tag == overdefined; } Constant *getConstant() const { assert(isConstant() && "Cannot get the constant of a non-constant!"); return Val; } Constant *getNotConstant() const { assert(isNotConstant() && "Cannot get the constant of a non-notconstant!"); return Val; } ConstantRange getConstantRange() const { assert(isConstantRange() && "Cannot get the constant-range of a non-constant-range!"); return Range; } /// markOverdefined - Return true if this is a change in status. bool markOverdefined() { if (isOverdefined()) return false; Tag = overdefined; return true; } /// markConstant - Return true if this is a change in status. bool markConstant(Constant *V) { if (isConstant()) { assert(getConstant() == V && "Marking constant with different value"); return false; } assert(isUndefined()); Tag = constant; assert(V && "Marking constant with NULL"); Val = V; return true; } /// markNotConstant - Return true if this is a change in status. bool markNotConstant(Constant *V) { if (isNotConstant()) { assert(getNotConstant() == V && "Marking !constant with different value"); return false; } if (isConstant()) assert(getConstant() != V && "Marking not constant with different value"); else assert(isUndefined()); Tag = notconstant; assert(V && "Marking constant with NULL"); Val = V; return true; } /// markConstantRange - Return true if this is a change in status. bool markConstantRange(const ConstantRange NewR) { if (isConstantRange()) { if (NewR.isEmptySet()) return markOverdefined(); bool changed = Range == NewR; Range = NewR; return changed; } assert(isUndefined()); if (NewR.isEmptySet()) return markOverdefined(); else if (NewR.isFullSet()) { Tag = undefined; return true; } Tag = constantrange; Range = NewR; return true; } /// mergeIn - Merge the specified lattice value into this one, updating this /// one and returning true if anything changed. bool mergeIn(const LVILatticeVal &RHS) { if (RHS.isUndefined() || isOverdefined()) return false; if (RHS.isOverdefined()) return markOverdefined(); if (RHS.isNotConstant()) { if (isNotConstant()) { if (getNotConstant() != RHS.getNotConstant() || isa(getNotConstant()) || isa(RHS.getNotConstant())) return markOverdefined(); return false; } if (isConstant()) { if (getConstant() == RHS.getNotConstant() || isa(RHS.getNotConstant()) || isa(getConstant())) return markOverdefined(); return markNotConstant(RHS.getNotConstant()); } assert(isUndefined() && "Unexpected lattice"); return markNotConstant(RHS.getNotConstant()); } if (RHS.isConstantRange()) { if (isConstantRange()) { ConstantRange NewR = Range.unionWith(RHS.getConstantRange()); if (NewR.isFullSet()) return markOverdefined(); else return markConstantRange(NewR); } else if (!isUndefined()) { return markOverdefined(); } assert(isUndefined() && "Unexpected lattice"); return markConstantRange(RHS.getConstantRange()); } // RHS must be a constant, we must be undef, constant, or notconstant. assert(!isConstantRange() && "Constant and ConstantRange cannot be merged."); if (isUndefined()) return markConstant(RHS.getConstant()); if (isConstant()) { if (getConstant() != RHS.getConstant()) return markOverdefined(); return false; } // If we are known "!=4" and RHS is "==5", stay at "!=4". if (getNotConstant() == RHS.getConstant() || isa(getNotConstant()) || isa(RHS.getConstant())) return markOverdefined(); return false; } }; } // end anonymous namespace. namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) { if (Val.isUndefined()) return OS << "undefined"; if (Val.isOverdefined()) return OS << "overdefined"; if (Val.isNotConstant()) return OS << "notconstant<" << *Val.getNotConstant() << '>'; else if (Val.isConstantRange()) return OS << "constantrange<" << Val.getConstantRange().getLower() << ", " << Val.getConstantRange().getUpper() << '>'; return OS << "constant<" << *Val.getConstant() << '>'; } } //===----------------------------------------------------------------------===// // LazyValueInfoCache Decl //===----------------------------------------------------------------------===// namespace { /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which /// maintains information about queries across the clients' queries. class LazyValueInfoCache { public: /// BlockCacheEntryTy - This is a computed lattice value at the end of the /// specified basic block for a Value* that depends on context. typedef std::pair, LVILatticeVal> BlockCacheEntryTy; /// ValueCacheEntryTy - This is all of the cached block information for /// exactly one Value*. The entries are sorted by the BasicBlock* of the /// entries, allowing us to do a lookup with a binary search. typedef std::map, LVILatticeVal> ValueCacheEntryTy; private: /// LVIValueHandle - A callback value handle update the cache when /// values are erased. struct LVIValueHandle : public CallbackVH { LazyValueInfoCache *Parent; LVIValueHandle(Value *V, LazyValueInfoCache *P) : CallbackVH(V), Parent(P) { } void deleted(); void allUsesReplacedWith(Value* V) { deleted(); } LVIValueHandle &operator=(Value *V) { return *this = LVIValueHandle(V, Parent); } }; /// ValueCache - This is all of the cached information for all values, /// mapped from Value* to key information. std::map ValueCache; /// OverDefinedCache - This tracks, on a per-block basis, the set of /// values that are over-defined at the end of that block. This is required /// for cache updating. std::set, Value*> > OverDefinedCache; public: /// getValueInBlock - This is the query interface to determine the lattice /// value for the specified Value* at the end of the specified block. LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB); /// getValueOnEdge - This is the query interface to determine the lattice /// value for the specified Value* that is true on the specified edge. LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB); /// threadEdge - This is the update interface to inform the cache that an /// edge from PredBB to OldSucc has been threaded to be from PredBB to /// NewSucc. void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); /// eraseBlock - This is part of the update interface to inform the cache /// that a block has been deleted. void eraseBlock(BasicBlock *BB); /// clear - Empty the cache. void clear() { ValueCache.clear(); OverDefinedCache.clear(); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // LVIQuery Impl //===----------------------------------------------------------------------===// namespace { /// LVIQuery - This is a transient object that exists while a query is /// being performed. /// /// TODO: Reuse LVIQuery instead of recreating it for every query, this avoids /// reallocation of the densemap on every query. class LVIQuery { typedef LazyValueInfoCache::BlockCacheEntryTy BlockCacheEntryTy; typedef LazyValueInfoCache::ValueCacheEntryTy ValueCacheEntryTy; /// This is the current value being queried for. Value *Val; /// This is a pointer to the owning cache, for recursive queries. LazyValueInfoCache &Parent; /// This is all of the cached information about this value. ValueCacheEntryTy &Cache; /// This tracks, for each block, what values are overdefined. std::set, Value*> > &OverDefinedCache; /// NewBlocks - This is a mapping of the new BasicBlocks which have been /// added to cache but that are not in sorted order. DenseSet NewBlockInfo; public: LVIQuery(Value *V, LazyValueInfoCache &P, ValueCacheEntryTy &VC, std::set, Value*> > &ODC) : Val(V), Parent(P), Cache(VC), OverDefinedCache(ODC) { } ~LVIQuery() { // When the query is done, insert the newly discovered facts into the // cache in sorted order. if (NewBlockInfo.empty()) return; for (DenseSet::iterator I = NewBlockInfo.begin(), E = NewBlockInfo.end(); I != E; ++I) { if (Cache[*I].isOverdefined()) OverDefinedCache.insert(std::make_pair(*I, Val)); } } LVILatticeVal getBlockValue(BasicBlock *BB); LVILatticeVal getEdgeValue(BasicBlock *FromBB, BasicBlock *ToBB); private: LVILatticeVal getCachedEntryForBlock(BasicBlock *BB); }; } // end anonymous namespace void LazyValueInfoCache::LVIValueHandle::deleted() { for (std::set, Value*> >::iterator I = Parent->OverDefinedCache.begin(), E = Parent->OverDefinedCache.end(); I != E; ) { std::set, Value*> >::iterator tmp = I; ++I; if (tmp->second == getValPtr()) Parent->OverDefinedCache.erase(tmp); } // This erasure deallocates *this, so it MUST happen after we're done // using any and all members of *this. Parent->ValueCache.erase(*this); } void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { for (std::set, Value*> >::iterator I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E; ) { std::set, Value*> >::iterator tmp = I; ++I; if (tmp->first == BB) OverDefinedCache.erase(tmp); } for (std::map::iterator I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I) I->second.erase(BB); } /// getCachedEntryForBlock - See if we already have a value for this block. If /// so, return it, otherwise create a new entry in the Cache map to use. LVILatticeVal LVIQuery::getCachedEntryForBlock(BasicBlock *BB) { NewBlockInfo.insert(BB); return Cache[BB]; } LVILatticeVal LVIQuery::getBlockValue(BasicBlock *BB) { // See if we already have a value for this block. LVILatticeVal BBLV = getCachedEntryForBlock(BB); // If we've already computed this block's value, return it. if (!BBLV.isUndefined()) { DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n'); return BBLV; } // Otherwise, this is the first time we're seeing this block. Reset the // lattice value to overdefined, so that cycles will terminate and be // conservatively correct. BBLV.markOverdefined(); Cache[BB] = BBLV; Instruction *BBI = dyn_cast(Val); if (BBI == 0 || BBI->getParent() != BB) { LVILatticeVal Result; // Start Undefined. // If this is a pointer, and there's a load from that pointer in this BB, // then we know that the pointer can't be NULL. if (Val->getType()->isPointerTy()) { const PointerType *PTy = cast(Val->getType()); for (Value::use_iterator UI = Val->use_begin(), UE = Val->use_end(); UI != UE; ++UI) { LoadInst *L = dyn_cast(*UI); if (L && L->getParent() == BB) { return LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); } } } unsigned NumPreds = 0; // Loop over all of our predecessors, merging what we know from them into // result. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { Result.mergeIn(getEdgeValue(*PI, BB)); // If we hit overdefined, exit early. The BlockVals entry is already set // to overdefined. if (Result.isOverdefined()) { DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred.\n"); return Result; } ++NumPreds; } // If this is the entry block, we must be asking about an argument. The // value is overdefined. if (NumPreds == 0 && BB == &BB->getParent()->front()) { assert(isa(Val) && "Unknown live-in to the entry block"); Result.markOverdefined(); return Result; } // Return the merged value, which is more precise than 'overdefined'. assert(!Result.isOverdefined()); return Cache[BB] = Result; } // If this value is defined by an instruction in this block, we have to // process it here somehow or return overdefined. if (PHINode *PN = dyn_cast(BBI)) { LVILatticeVal Result; // Start Undefined. // Loop over all of our predecessors, merging what we know from them into // result. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { Value* PhiVal = PN->getIncomingValueForBlock(*PI); Result.mergeIn(Parent.getValueOnEdge(PhiVal, *PI, BB)); // If we hit overdefined, exit early. The BlockVals entry is already set // to overdefined. if (Result.isOverdefined()) { DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred.\n"); return Result; } } // Return the merged value, which is more precise than 'overdefined'. assert(!Result.isOverdefined()); return Cache[BB] = Result; } assert(Cache[BB].isOverdefined() && "Recursive query changed our cache?"); // We can only analyze the definitions of certain classes of instructions // (integral binops and casts at the moment), so bail if this isn't one. LVILatticeVal Result; if ((!isa(BBI) && !isa(BBI)) || !BBI->getType()->isIntegerTy()) { DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because inst def found.\n"); Result.markOverdefined(); return Result; } // FIXME: We're currently limited to binops with a constant RHS. This should // be improved. BinaryOperator *BO = dyn_cast(BBI); if (BO && !isa(BO->getOperand(1))) { DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because inst def found.\n"); Result.markOverdefined(); return Result; } // Figure out the range of the LHS. If that fails, bail. LVILatticeVal LHSVal = Parent.getValueInBlock(BBI->getOperand(0), BB); if (!LHSVal.isConstantRange()) { Result.markOverdefined(); return Result; } ConstantInt *RHS = 0; ConstantRange LHSRange = LHSVal.getConstantRange(); ConstantRange RHSRange(1); const IntegerType *ResultTy = cast(BBI->getType()); if (isa(BBI)) { RHS = dyn_cast(BBI->getOperand(1)); if (!RHS) { Result.markOverdefined(); return Result; } RHSRange = ConstantRange(RHS->getValue(), RHS->getValue()+1); } // NOTE: We're currently limited by the set of operations that ConstantRange // can evaluate symbolically. Enhancing that set will allows us to analyze // more definitions. switch (BBI->getOpcode()) { case Instruction::Add: Result.markConstantRange(LHSRange.add(RHSRange)); break; case Instruction::Sub: Result.markConstantRange(LHSRange.sub(RHSRange)); break; case Instruction::Mul: Result.markConstantRange(LHSRange.multiply(RHSRange)); break; case Instruction::UDiv: Result.markConstantRange(LHSRange.udiv(RHSRange)); break; case Instruction::Shl: Result.markConstantRange(LHSRange.shl(RHSRange)); break; case Instruction::LShr: Result.markConstantRange(LHSRange.lshr(RHSRange)); break; case Instruction::Trunc: Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth())); break; case Instruction::SExt: Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth())); break; case Instruction::ZExt: Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth())); break; case Instruction::BitCast: Result.markConstantRange(LHSRange); break; // Unhandled instructions are overdefined. default: DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because inst def found.\n"); Result.markOverdefined(); break; } return Cache[BB] = Result; } /// getEdgeValue - This method attempts to infer more complex LVILatticeVal LVIQuery::getEdgeValue(BasicBlock *BBFrom, BasicBlock *BBTo) { // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we // know that v != 0. if (BranchInst *BI = dyn_cast(BBFrom->getTerminator())) { // If this is a conditional branch and only one successor goes to BBTo, then // we maybe able to infer something from the condition. if (BI->isConditional() && BI->getSuccessor(0) != BI->getSuccessor(1)) { bool isTrueDest = BI->getSuccessor(0) == BBTo; assert(BI->getSuccessor(!isTrueDest) == BBTo && "BBTo isn't a successor of BBFrom"); // If V is the condition of the branch itself, then we know exactly what // it is. if (BI->getCondition() == Val) return LVILatticeVal::get(ConstantInt::get( Type::getInt1Ty(Val->getContext()), isTrueDest)); // If the condition of the branch is an equality comparison, we may be // able to infer the value. ICmpInst *ICI = dyn_cast(BI->getCondition()); if (ICI && ICI->getOperand(0) == Val && isa(ICI->getOperand(1))) { if (ICI->isEquality()) { // We know that V has the RHS constant if this is a true SETEQ or // false SETNE. if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ)) return LVILatticeVal::get(cast(ICI->getOperand(1))); return LVILatticeVal::getNot(cast(ICI->getOperand(1))); } if (ConstantInt *CI = dyn_cast(ICI->getOperand(1))) { // Calculate the range of values that would satisfy the comparison. ConstantRange CmpRange(CI->getValue(), CI->getValue()+1); ConstantRange TrueValues = ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange); // If we're interested in the false dest, invert the condition. if (!isTrueDest) TrueValues = TrueValues.inverse(); // Figure out the possible values of the query BEFORE this branch. LVILatticeVal InBlock = getBlockValue(BBFrom); if (!InBlock.isConstantRange()) return InBlock; // Find all potential values that satisfy both the input and output // conditions. ConstantRange PossibleValues = TrueValues.intersectWith(InBlock.getConstantRange()); return LVILatticeVal::getRange(PossibleValues); } } } } // If the edge was formed by a switch on the value, then we may know exactly // what it is. if (SwitchInst *SI = dyn_cast(BBFrom->getTerminator())) { // If BBTo is the default destination of the switch, we know that it // doesn't have the same value as any of the cases. if (SI->getCondition() == Val) { if (SI->getDefaultDest() == BBTo) { const IntegerType *IT = cast(Val->getType()); ConstantRange CR(IT->getBitWidth()); for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) { const APInt CaseVal = SI->getCaseValue(i)->getValue(); ConstantRange CaseRange(CaseVal, CaseVal+1); CaseRange = CaseRange.inverse(); CR = CR.intersectWith(CaseRange); } LVILatticeVal Result; if (CR.isFullSet() || CR.isEmptySet()) Result.markOverdefined(); else Result.markConstantRange(CR); return Result; } // We only know something if there is exactly one value that goes from // BBFrom to BBTo. unsigned NumEdges = 0; ConstantInt *EdgeVal = 0; for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) { if (SI->getSuccessor(i) != BBTo) continue; if (NumEdges++) break; EdgeVal = SI->getCaseValue(i); } assert(EdgeVal && "Missing successor?"); if (NumEdges == 1) return LVILatticeVal::get(EdgeVal); } } // Otherwise see if the value is known in the block. return getBlockValue(BBFrom); } //===----------------------------------------------------------------------===// // LazyValueInfoCache Impl //===----------------------------------------------------------------------===// LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) { // If already a constant, there is nothing to compute. if (Constant *VC = dyn_cast(V)) return LVILatticeVal::get(VC); DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" << BB->getName() << "'\n"); LVILatticeVal Result = LVIQuery(V, *this, ValueCache[LVIValueHandle(V, this)], OverDefinedCache).getBlockValue(BB); DEBUG(dbgs() << " Result = " << Result << "\n"); return Result; } LVILatticeVal LazyValueInfoCache:: getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) { // If already a constant, there is nothing to compute. if (Constant *VC = dyn_cast(V)) return LVILatticeVal::get(VC); DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" << FromBB->getName() << "' to '" << ToBB->getName() << "'\n"); LVILatticeVal Result = LVIQuery(V, *this, ValueCache[LVIValueHandle(V, this)], OverDefinedCache).getEdgeValue(FromBB, ToBB); DEBUG(dbgs() << " Result = " << Result << "\n"); return Result; } void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock *NewSucc) { // When an edge in the graph has been threaded, values that we could not // determine a value for before (i.e. were marked overdefined) may be possible // to solve now. We do NOT try to proactively update these values. Instead, // we clear their entries from the cache, and allow lazy updating to recompute // them when needed. // The updating process is fairly simple: we need to dropped cached info // for all values that were marked overdefined in OldSucc, and for those same // values in any successor of OldSucc (except NewSucc) in which they were // also marked overdefined. std::vector worklist; worklist.push_back(OldSucc); DenseSet ClearSet; for (std::set, Value*> >::iterator I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E; ++I) { if (I->first == OldSucc) ClearSet.insert(I->second); } // Use a worklist to perform a depth-first search of OldSucc's successors. // NOTE: We do not need a visited list since any blocks we have already // visited will have had their overdefined markers cleared already, and we // thus won't loop to their successors. while (!worklist.empty()) { BasicBlock *ToUpdate = worklist.back(); worklist.pop_back(); // Skip blocks only accessible through NewSucc. if (ToUpdate == NewSucc) continue; bool changed = false; for (DenseSet::iterator I = ClearSet.begin(),E = ClearSet.end(); I != E; ++I) { // If a value was marked overdefined in OldSucc, and is here too... std::set, Value*> >::iterator OI = OverDefinedCache.find(std::make_pair(ToUpdate, *I)); if (OI == OverDefinedCache.end()) continue; // Remove it from the caches. ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)]; ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate); assert(CI != Entry.end() && "Couldn't find entry to update?"); Entry.erase(CI); OverDefinedCache.erase(OI); // If we removed anything, then we potentially need to update // blocks successors too. changed = true; } if (!changed) continue; worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); } } //===----------------------------------------------------------------------===// // LazyValueInfo Impl //===----------------------------------------------------------------------===// /// getCache - This lazily constructs the LazyValueInfoCache. static LazyValueInfoCache &getCache(void *&PImpl) { if (!PImpl) PImpl = new LazyValueInfoCache(); return *static_cast(PImpl); } bool LazyValueInfo::runOnFunction(Function &F) { if (PImpl) getCache(PImpl).clear(); TD = getAnalysisIfAvailable(); // Fully lazy. return false; } void LazyValueInfo::releaseMemory() { // If the cache was allocated, free it. if (PImpl) { delete &getCache(PImpl); PImpl = 0; } } Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) { LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB); if (Result.isConstant()) return Result.getConstant(); return 0; } /// getConstantOnEdge - Determine whether the specified value is known to be a /// constant on the specified edge. Return null if not. Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) { LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); if (Result.isConstant()) return Result.getConstant(); else if (Result.isConstantRange()) { ConstantRange CR = Result.getConstantRange(); if (const APInt *SingleVal = CR.getSingleElement()) return ConstantInt::get(V->getContext(), *SingleVal); } return 0; } /// getPredicateOnEdge - Determine whether the specified value comparison /// with a constant is known to be true or false on the specified CFG edge. /// Pred is a CmpInst predicate. LazyValueInfo::Tristate LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, BasicBlock *FromBB, BasicBlock *ToBB) { LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); // If we know the value is a constant, evaluate the conditional. Constant *Res = 0; if (Result.isConstant()) { Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD); if (ConstantInt *ResCI = dyn_cast_or_null(Res)) return ResCI->isZero() ? False : True; return Unknown; } if (Result.isConstantRange()) { ConstantInt *CI = dyn_cast(C); if (!CI) return Unknown; ConstantRange CR = Result.getConstantRange(); if (Pred == ICmpInst::ICMP_EQ) { if (!CR.contains(CI->getValue())) return False; if (CR.isSingleElement() && CR.contains(CI->getValue())) return True; } else if (Pred == ICmpInst::ICMP_NE) { if (!CR.contains(CI->getValue())) return True; if (CR.isSingleElement() && CR.contains(CI->getValue())) return False; } // Handle more complex predicates. ConstantRange RHS(CI->getValue(), CI->getValue()+1); ConstantRange TrueValues = ConstantRange::makeICmpRegion(Pred, RHS); if (CR.intersectWith(TrueValues).isEmptySet()) return False; else if (TrueValues.contains(CR)) return True; return Unknown; } if (Result.isNotConstant()) { // If this is an equality comparison, we can try to fold it knowing that // "V != C1". if (Pred == ICmpInst::ICMP_EQ) { // !C1 == C -> false iff C1 == C. Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, Result.getNotConstant(), C, TD); if (Res->isNullValue()) return False; } else if (Pred == ICmpInst::ICMP_NE) { // !C1 != C -> true iff C1 == C. Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, Result.getNotConstant(), C, TD); if (Res->isNullValue()) return True; } return Unknown; } return Unknown; } void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock* NewSucc) { if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc); } void LazyValueInfo::eraseBlock(BasicBlock *BB) { if (PImpl) getCache(PImpl).eraseBlock(BB); }