//===-- Writer.cpp - Library for converting LLVM code to C ----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This library converts LLVM code to C code, compilable by GCC. // //===----------------------------------------------------------------------===// #include "llvm/Assembly/CWriter.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/SymbolTable.h" #include "llvm/Intrinsics.h" #include "llvm/Analysis/FindUsedTypes.h" #include "llvm/Analysis/ConstantsScanner.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/InstIterator.h" #include "llvm/Support/Mangler.h" #include "Support/StringExtras.h" #include "Support/STLExtras.h" #include "Config/config.h" #include #include namespace llvm { namespace { class CWriter : public Pass, public InstVisitor { std::ostream &Out; Mangler *Mang; const Module *TheModule; FindUsedTypes *FUT; std::map TypeNames; std::set MangledGlobals; bool needsMalloc, emittedInvoke; std::map FPConstantMap; public: CWriter(std::ostream &o) : Out(o) {} void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); } virtual bool run(Module &M) { // Initialize TheModule = &M; FUT = &getAnalysis(); // Ensure that all structure types have names... bool Changed = nameAllUsedStructureTypes(M); Mang = new Mangler(M); // Run... printModule(&M); // Free memory... delete Mang; TypeNames.clear(); MangledGlobals.clear(); return false; } std::ostream &printType(std::ostream &Out, const Type *Ty, const std::string &VariableName = "", bool IgnoreName = false); void writeOperand(Value *Operand); void writeOperandInternal(Value *Operand); private : bool nameAllUsedStructureTypes(Module &M); void printModule(Module *M); void printFloatingPointConstants(Module &M); void printSymbolTable(const SymbolTable &ST); void printContainedStructs(const Type *Ty, std::set &); void printFunctionSignature(const Function *F, bool Prototype); void printFunction(Function *); void printConstant(Constant *CPV); void printConstantArray(ConstantArray *CPA); // isInlinableInst - Attempt to inline instructions into their uses to build // trees as much as possible. To do this, we have to consistently decide // what is acceptable to inline, so that variable declarations don't get // printed and an extra copy of the expr is not emitted. // static bool isInlinableInst(const Instruction &I) { // Must be an expression, must be used exactly once. If it is dead, we // emit it inline where it would go. if (I.getType() == Type::VoidTy || !I.hasOneUse() || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I)) // Don't inline a load across a store or other bad things! return false; // Only inline instruction it it's use is in the same BB as the inst. return I.getParent() == cast(I.use_back())->getParent(); } // isDirectAlloca - Define fixed sized allocas in the entry block as direct // variables which are accessed with the & operator. This causes GCC to // generate significantly better code than to emit alloca calls directly. // static const AllocaInst *isDirectAlloca(const Value *V) { const AllocaInst *AI = dyn_cast(V); if (!AI) return false; if (AI->isArrayAllocation()) return 0; // FIXME: we can also inline fixed size array allocas! if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock()) return 0; return AI; } // Instruction visitation functions friend class InstVisitor; void visitReturnInst(ReturnInst &I); void visitBranchInst(BranchInst &I); void visitSwitchInst(SwitchInst &I); void visitInvokeInst(InvokeInst &I); void visitUnwindInst(UnwindInst &I); void visitPHINode(PHINode &I); void visitBinaryOperator(Instruction &I); void visitCastInst (CastInst &I); void visitCallInst (CallInst &I); void visitCallSite (CallSite CS); void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } void visitMallocInst(MallocInst &I); void visitAllocaInst(AllocaInst &I); void visitFreeInst (FreeInst &I); void visitLoadInst (LoadInst &I); void visitStoreInst (StoreInst &I); void visitGetElementPtrInst(GetElementPtrInst &I); void visitVANextInst(VANextInst &I); void visitVAArgInst (VAArgInst &I); void visitInstruction(Instruction &I) { std::cerr << "C Writer does not know about " << I; abort(); } void outputLValue(Instruction *I) { Out << " " << Mang->getValueName(I) << " = "; } void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock, unsigned Indent); void printIndexingExpression(Value *Ptr, gep_type_iterator I, gep_type_iterator E); }; // Pass the Type* and the variable name and this prints out the variable // declaration. // std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty, const std::string &NameSoFar, bool IgnoreName) { if (Ty->isPrimitiveType()) switch (Ty->getPrimitiveID()) { case Type::VoidTyID: return Out << "void " << NameSoFar; case Type::BoolTyID: return Out << "bool " << NameSoFar; case Type::UByteTyID: return Out << "unsigned char " << NameSoFar; case Type::SByteTyID: return Out << "signed char " << NameSoFar; case Type::UShortTyID: return Out << "unsigned short " << NameSoFar; case Type::ShortTyID: return Out << "short " << NameSoFar; case Type::UIntTyID: return Out << "unsigned " << NameSoFar; case Type::IntTyID: return Out << "int " << NameSoFar; case Type::ULongTyID: return Out << "unsigned long long " << NameSoFar; case Type::LongTyID: return Out << "signed long long " << NameSoFar; case Type::FloatTyID: return Out << "float " << NameSoFar; case Type::DoubleTyID: return Out << "double " << NameSoFar; default : std::cerr << "Unknown primitive type: " << Ty << "\n"; abort(); } // Check to see if the type is named. if (!IgnoreName || isa(Ty)) { std::map::iterator I = TypeNames.find(Ty); if (I != TypeNames.end()) return Out << I->second << " " << NameSoFar; } switch (Ty->getPrimitiveID()) { case Type::FunctionTyID: { const FunctionType *MTy = cast(Ty); std::stringstream FunctionInnards; FunctionInnards << " (" << NameSoFar << ") ("; for (FunctionType::ParamTypes::const_iterator I = MTy->getParamTypes().begin(), E = MTy->getParamTypes().end(); I != E; ++I) { if (I != MTy->getParamTypes().begin()) FunctionInnards << ", "; printType(FunctionInnards, *I, ""); } if (MTy->isVarArg()) { if (!MTy->getParamTypes().empty()) FunctionInnards << ", ..."; } else if (MTy->getParamTypes().empty()) { FunctionInnards << "void"; } FunctionInnards << ")"; std::string tstr = FunctionInnards.str(); printType(Out, MTy->getReturnType(), tstr); return Out; } case Type::StructTyID: { const StructType *STy = cast(Ty); Out << NameSoFar + " {\n"; unsigned Idx = 0; for (StructType::ElementTypes::const_iterator I = STy->getElementTypes().begin(), E = STy->getElementTypes().end(); I != E; ++I) { Out << " "; printType(Out, *I, "field" + utostr(Idx++)); Out << ";\n"; } return Out << "}"; } case Type::PointerTyID: { const PointerType *PTy = cast(Ty); std::string ptrName = "*" + NameSoFar; if (isa(PTy->getElementType())) ptrName = "(" + ptrName + ")"; return printType(Out, PTy->getElementType(), ptrName); } case Type::ArrayTyID: { const ArrayType *ATy = cast(Ty); unsigned NumElements = ATy->getNumElements(); return printType(Out, ATy->getElementType(), NameSoFar + "[" + utostr(NumElements) + "]"); } case Type::OpaqueTyID: { static int Count = 0; std::string TyName = "struct opaque_" + itostr(Count++); assert(TypeNames.find(Ty) == TypeNames.end()); TypeNames[Ty] = TyName; return Out << TyName << " " << NameSoFar; } default: assert(0 && "Unhandled case in getTypeProps!"); abort(); } return Out; } void CWriter::printConstantArray(ConstantArray *CPA) { // As a special case, print the array as a string if it is an array of // ubytes or an array of sbytes with positive values. // const Type *ETy = CPA->getType()->getElementType(); bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy); // Make sure the last character is a null char, as automatically added by C if (isString && (CPA->getNumOperands() == 0 || !cast(*(CPA->op_end()-1))->isNullValue())) isString = false; if (isString) { Out << "\""; // Keep track of whether the last number was a hexadecimal escape bool LastWasHex = false; // Do not include the last character, which we know is null for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) { unsigned char C = cast(CPA->getOperand(i))->getRawValue(); // Print it out literally if it is a printable character. The only thing // to be careful about is when the last letter output was a hex escape // code, in which case we have to be careful not to print out hex digits // explicitly (the C compiler thinks it is a continuation of the previous // character, sheesh...) // if (isprint(C) && (!LastWasHex || !isxdigit(C))) { LastWasHex = false; if (C == '"' || C == '\\') Out << "\\" << C; else Out << C; } else { LastWasHex = false; switch (C) { case '\n': Out << "\\n"; break; case '\t': Out << "\\t"; break; case '\r': Out << "\\r"; break; case '\v': Out << "\\v"; break; case '\a': Out << "\\a"; break; case '\"': Out << "\\\""; break; case '\'': Out << "\\\'"; break; default: Out << "\\x"; Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')); Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); LastWasHex = true; break; } } } Out << "\""; } else { Out << "{"; if (CPA->getNumOperands()) { Out << " "; printConstant(cast(CPA->getOperand(0))); for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) { Out << ", "; printConstant(cast(CPA->getOperand(i))); } } Out << " }"; } } // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out // textually as a double (rather than as a reference to a stack-allocated // variable). We decide this by converting CFP to a string and back into a // double, and then checking whether the conversion results in a bit-equal // double to the original value of CFP. This depends on us and the target C // compiler agreeing on the conversion process (which is pretty likely since we // only deal in IEEE FP). // bool isFPCSafeToPrint(const ConstantFP *CFP) { #if HAVE_PRINTF_A char Buffer[100]; sprintf(Buffer, "%a", CFP->getValue()); if (!strncmp(Buffer, "0x", 2) || !strncmp(Buffer, "-0x", 3) || !strncmp(Buffer, "+0x", 3)) return atof(Buffer) == CFP->getValue(); return false; #else std::string StrVal = ftostr(CFP->getValue()); while (StrVal[0] == ' ') StrVal.erase(StrVal.begin()); // Check to make sure that the stringized number is not some string like "Inf" // or NaN. Check that the string matches the "[-+]?[0-9]" regex. if ((StrVal[0] >= '0' && StrVal[0] <= '9') || ((StrVal[0] == '-' || StrVal[0] == '+') && (StrVal[1] >= '0' && StrVal[1] <= '9'))) // Reparse stringized version! return atof(StrVal.c_str()) == CFP->getValue(); return false; #endif } // printConstant - The LLVM Constant to C Constant converter. void CWriter::printConstant(Constant *CPV) { if (const ConstantExpr *CE = dyn_cast(CPV)) { switch (CE->getOpcode()) { case Instruction::Cast: Out << "(("; printType(Out, CPV->getType()); Out << ")"; printConstant(CE->getOperand(0)); Out << ")"; return; case Instruction::GetElementPtr: Out << "(&("; printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV), gep_type_end(CPV)); Out << "))"; return; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::Div: case Instruction::Rem: case Instruction::SetEQ: case Instruction::SetNE: case Instruction::SetLT: case Instruction::SetLE: case Instruction::SetGT: case Instruction::SetGE: case Instruction::Shl: case Instruction::Shr: Out << "("; printConstant(CE->getOperand(0)); switch (CE->getOpcode()) { case Instruction::Add: Out << " + "; break; case Instruction::Sub: Out << " - "; break; case Instruction::Mul: Out << " * "; break; case Instruction::Div: Out << " / "; break; case Instruction::Rem: Out << " % "; break; case Instruction::SetEQ: Out << " == "; break; case Instruction::SetNE: Out << " != "; break; case Instruction::SetLT: Out << " < "; break; case Instruction::SetLE: Out << " <= "; break; case Instruction::SetGT: Out << " > "; break; case Instruction::SetGE: Out << " >= "; break; case Instruction::Shl: Out << " << "; break; case Instruction::Shr: Out << " >> "; break; default: assert(0 && "Illegal opcode here!"); } printConstant(CE->getOperand(1)); Out << ")"; return; default: std::cerr << "CWriter Error: Unhandled constant expression: " << CE << "\n"; abort(); } } switch (CPV->getType()->getPrimitiveID()) { case Type::BoolTyID: Out << (CPV == ConstantBool::False ? "0" : "1"); break; case Type::SByteTyID: case Type::ShortTyID: Out << cast(CPV)->getValue(); break; case Type::IntTyID: if ((int)cast(CPV)->getValue() == (int)0x80000000) Out << "((int)0x80000000)"; // Handle MININT specially to avoid warning else Out << cast(CPV)->getValue(); break; case Type::LongTyID: Out << cast(CPV)->getValue() << "ll"; break; case Type::UByteTyID: case Type::UShortTyID: Out << cast(CPV)->getValue(); break; case Type::UIntTyID: Out << cast(CPV)->getValue() << "u"; break; case Type::ULongTyID: Out << cast(CPV)->getValue() << "ull"; break; case Type::FloatTyID: case Type::DoubleTyID: { ConstantFP *FPC = cast(CPV); std::map::iterator I = FPConstantMap.find(FPC); if (I != FPConstantMap.end()) { // Because of FP precision problems we must load from a stack allocated // value that holds the value in hex. Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double") << "*)&FPConstant" << I->second << ")"; } else { #if HAVE_PRINTF_A // Print out the constant as a floating point number. char Buffer[100]; sprintf(Buffer, "%a", FPC->getValue()); Out << Buffer << " /*" << FPC->getValue() << "*/ "; #else Out << ftostr(FPC->getValue()); #endif } break; } case Type::ArrayTyID: printConstantArray(cast(CPV)); break; case Type::StructTyID: { Out << "{"; if (CPV->getNumOperands()) { Out << " "; printConstant(cast(CPV->getOperand(0))); for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) { Out << ", "; printConstant(cast(CPV->getOperand(i))); } } Out << " }"; break; } case Type::PointerTyID: if (isa(CPV)) { Out << "(("; printType(Out, CPV->getType()); Out << ")/*NULL*/0)"; break; } else if (ConstantPointerRef *CPR = dyn_cast(CPV)) { writeOperand(CPR->getValue()); break; } // FALL THROUGH default: std::cerr << "Unknown constant type: " << CPV << "\n"; abort(); } } void CWriter::writeOperandInternal(Value *Operand) { if (Instruction *I = dyn_cast(Operand)) if (isInlinableInst(*I) && !isDirectAlloca(I)) { // Should we inline this instruction to build a tree? Out << "("; visit(*I); Out << ")"; return; } if (Constant *CPV = dyn_cast(Operand)) { printConstant(CPV); } else { Out << Mang->getValueName(Operand); } } void CWriter::writeOperand(Value *Operand) { if (isa(Operand) || isDirectAlloca(Operand)) Out << "(&"; // Global variables are references as their addresses by llvm writeOperandInternal(Operand); if (isa(Operand) || isDirectAlloca(Operand)) Out << ")"; } // nameAllUsedStructureTypes - If there are structure types in the module that // are used but do not have names assigned to them in the symbol table yet then // we assign them names now. // bool CWriter::nameAllUsedStructureTypes(Module &M) { // Get a set of types that are used by the program... std::set UT = FUT->getTypes(); // Loop over the module symbol table, removing types from UT that are already // named. // SymbolTable &MST = M.getSymbolTable(); if (MST.find(Type::TypeTy) != MST.end()) for (SymbolTable::type_iterator I = MST.type_begin(Type::TypeTy), E = MST.type_end(Type::TypeTy); I != E; ++I) UT.erase(cast(I->second)); // UT now contains types that are not named. Loop over it, naming structure // types. // bool Changed = false; for (std::set::const_iterator I = UT.begin(), E = UT.end(); I != E; ++I) if (const StructType *ST = dyn_cast(*I)) { ((Value*)ST)->setName("unnamed", &MST); Changed = true; } return Changed; } // generateCompilerSpecificCode - This is where we add conditional compilation // directives to cater to specific compilers as need be. // static void generateCompilerSpecificCode(std::ostream& Out) { // Alloca is hard to get, and we don't want to include stdlib.h here... Out << "/* get a declaration for alloca */\n" << "#ifdef sun\n" << "extern void *__builtin_alloca(unsigned long);\n" << "#define alloca(x) __builtin_alloca(x)\n" << "#else\n" << "#ifndef __FreeBSD__\n" << "#include \n" << "#endif\n" << "#endif\n\n"; // We output GCC specific attributes to preserve 'linkonce'ness on globals. // If we aren't being compiled with GCC, just drop these attributes. Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n" << "#define __attribute__(X)\n" << "#endif\n"; } // generateProcessorSpecificCode - This is where we add conditional compilation // directives to cater to specific processors as need be. // static void generateProcessorSpecificCode(std::ostream& Out) { // According to ANSI C, longjmp'ing to a setjmp could invalidate any // non-volatile variable in the scope of the setjmp. For now, we are not // doing analysis to determine which variables need to be marked volatile, so // we just mark them all. // // HOWEVER, many targets implement setjmp by saving and restoring the register // file, so they DON'T need variables to be marked volatile, and this is a // HUGE pessimization for them. For this reason, on known-good processors, we // do not emit volatile qualifiers. Out << "#if defined(__386__) || defined(__i386__) || \\\n" << " defined(i386) || defined(WIN32)\n" << "/* setjmp does not require variables to be marked volatile */" << "#define VOLATILE_FOR_SETJMP\n" << "#else\n" << "#define VOLATILE_FOR_SETJMP volatile\n" << "#endif\n\n"; } void CWriter::printModule(Module *M) { // Calculate which global values have names that will collide when we throw // away type information. { // Scope to delete the FoundNames set when we are done with it... std::set FoundNames; for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) if (I->hasName()) // If the global has a name... if (FoundNames.count(I->getName())) // And the name is already used MangledGlobals.insert(I); // Mangle the name else FoundNames.insert(I->getName()); // Otherwise, keep track of name for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) if (I->hasName()) // If the global has a name... if (FoundNames.count(I->getName())) // And the name is already used MangledGlobals.insert(I); // Mangle the name else FoundNames.insert(I->getName()); // Otherwise, keep track of name } // get declaration for alloca Out << "/* Provide Declarations */\n"; Out << "#include \n"; // Varargs support Out << "#include \n"; // Unwind support generateCompilerSpecificCode(Out); generateProcessorSpecificCode(Out); // Provide a definition for `bool' if not compiling with a C++ compiler. Out << "\n" << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n" << "\n\n/* Support for floating point constants */\n" << "typedef unsigned long long ConstantDoubleTy;\n" << "typedef unsigned int ConstantFloatTy;\n" << "\n\n/* Support for the invoke instruction */\n" << "extern struct __llvm_jmpbuf_list_t {\n" << " jmp_buf buf; struct __llvm_jmpbuf_list_t *next;\n" << "} *__llvm_jmpbuf_list;\n" << "\n\n/* Global Declarations */\n"; // First output all the declarations for the program, because C requires // Functions & globals to be declared before they are used. // // Loop over the symbol table, emitting all named constants... printSymbolTable(M->getSymbolTable()); // Global variable declarations... if (!M->gempty()) { Out << "\n/* External Global Variable Declarations */\n"; for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) { if (I->hasExternalLinkage()) { Out << "extern "; printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); Out << ";\n"; } } } // Function declarations if (!M->empty()) { Out << "\n/* Function Declarations */\n"; needsMalloc = true; for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) { // If the function is external and the name collides don't print it. // Sometimes the bytecode likes to have multiple "declarations" for // external functions if ((I->hasInternalLinkage() || !MangledGlobals.count(I)) && !I->getIntrinsicID()) { printFunctionSignature(I, true); if (I->hasWeakLinkage()) Out << " __attribute__((weak))"; Out << ";\n"; } } } // Print Malloc prototype if needed if (needsMalloc) { Out << "\n/* Malloc to make sun happy */\n"; Out << "extern void * malloc();\n\n"; } // Output the global variable declarations if (!M->gempty()) { Out << "\n\n/* Global Variable Declarations */\n"; for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) if (!I->isExternal()) { Out << "extern "; printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); if (I->hasLinkOnceLinkage()) Out << " __attribute__((common))"; else if (I->hasWeakLinkage()) Out << " __attribute__((weak))"; Out << ";\n"; } } // Output the global variable definitions and contents... if (!M->gempty()) { Out << "\n\n/* Global Variable Definitions and Initialization */\n"; for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) if (!I->isExternal()) { if (I->hasInternalLinkage()) Out << "static "; printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); if (I->hasLinkOnceLinkage()) Out << " __attribute__((common))"; else if (I->hasWeakLinkage()) Out << " __attribute__((weak))"; // If the initializer is not null, emit the initializer. If it is null, // we try to avoid emitting large amounts of zeros. The problem with // this, however, occurs when the variable has weak linkage. In this // case, the assembler will complain about the variable being both weak // and common, so we disable this optimization. if (!I->getInitializer()->isNullValue() || I->hasWeakLinkage()) { Out << " = " ; writeOperand(I->getInitializer()); } Out << ";\n"; } } // Output all floating point constants that cannot be printed accurately... printFloatingPointConstants(*M); // Output all of the functions... emittedInvoke = false; if (!M->empty()) { Out << "\n\n/* Function Bodies */\n"; for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) printFunction(I); } // If the program included an invoke instruction, we need to output the // support code for it here! if (emittedInvoke) { Out << "\n/* More support for the invoke instruction */\n" << "struct __llvm_jmpbuf_list_t *__llvm_jmpbuf_list " << "__attribute__((common)) = 0;\n"; } // Done with global FP constants FPConstantMap.clear(); } /// Output all floating point constants that cannot be printed accurately... void CWriter::printFloatingPointConstants(Module &M) { union { double D; unsigned long long U; } DBLUnion; union { float F; unsigned U; } FLTUnion; // Scan the module for floating point constants. If any FP constant is used // in the function, we want to redirect it here so that we do not depend on // the precision of the printed form, unless the printed form preserves // precision. // unsigned FPCounter = 0; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) for (constant_iterator I = constant_begin(F), E = constant_end(F); I != E; ++I) if (const ConstantFP *FPC = dyn_cast(*I)) if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe. !FPConstantMap.count(FPC)) { double Val = FPC->getValue(); FPConstantMap[FPC] = FPCounter; // Number the FP constants if (FPC->getType() == Type::DoubleTy) { DBLUnion.D = Val; Out << "const ConstantDoubleTy FPConstant" << FPCounter++ << " = 0x" << std::hex << DBLUnion.U << std::dec << "ULL; /* " << Val << " */\n"; } else if (FPC->getType() == Type::FloatTy) { FLTUnion.F = Val; Out << "const ConstantFloatTy FPConstant" << FPCounter++ << " = 0x" << std::hex << FLTUnion.U << std::dec << "U; /* " << Val << " */\n"; } else assert(0 && "Unknown float type!"); } Out << "\n"; } /// printSymbolTable - Run through symbol table looking for type names. If a /// type name is found, emit it's declaration... /// void CWriter::printSymbolTable(const SymbolTable &ST) { // If there are no type names, exit early. if (ST.find(Type::TypeTy) == ST.end()) return; // We are only interested in the type plane of the symbol table... SymbolTable::type_const_iterator I = ST.type_begin(Type::TypeTy); SymbolTable::type_const_iterator End = ST.type_end(Type::TypeTy); // Print out forward declarations for structure types before anything else! Out << "/* Structure forward decls */\n"; for (; I != End; ++I) if (const Type *STy = dyn_cast(I->second)) // Only print out used types! if (FUT->getTypes().count(STy)) { std::string Name = "struct l_" + Mangler::makeNameProper(I->first); Out << Name << ";\n"; TypeNames.insert(std::make_pair(STy, Name)); } Out << "\n"; // Now we can print out typedefs... Out << "/* Typedefs */\n"; for (I = ST.type_begin(Type::TypeTy); I != End; ++I) // Only print out used types! if (FUT->getTypes().count(cast(I->second))) { const Type *Ty = cast(I->second); std::string Name = "l_" + Mangler::makeNameProper(I->first); Out << "typedef "; printType(Out, Ty, Name); Out << ";\n"; } Out << "\n"; // Keep track of which structures have been printed so far... std::set StructPrinted; // Loop over all structures then push them into the stack so they are // printed in the correct order. // Out << "/* Structure contents */\n"; for (I = ST.type_begin(Type::TypeTy); I != End; ++I) if (const StructType *STy = dyn_cast(I->second)) // Only print out used types! if (FUT->getTypes().count(STy)) printContainedStructs(STy, StructPrinted); } // Push the struct onto the stack and recursively push all structs // this one depends on. void CWriter::printContainedStructs(const Type *Ty, std::set &StructPrinted){ if (const StructType *STy = dyn_cast(Ty)) { //Check to see if we have already printed this struct if (StructPrinted.count(STy) == 0) { // Print all contained types first... for (StructType::ElementTypes::const_iterator I = STy->getElementTypes().begin(), E = STy->getElementTypes().end(); I != E; ++I) { const Type *Ty1 = I->get(); if (isa(Ty1) || isa(Ty1)) printContainedStructs(*I, StructPrinted); } //Print structure type out.. StructPrinted.insert(STy); std::string Name = TypeNames[STy]; printType(Out, STy, Name, true); Out << ";\n\n"; } // If it is an array, check contained types and continue } else if (const ArrayType *ATy = dyn_cast(Ty)){ const Type *Ty1 = ATy->getElementType(); if (isa(Ty1) || isa(Ty1)) printContainedStructs(Ty1, StructPrinted); } } void CWriter::printFunctionSignature(const Function *F, bool Prototype) { // If the program provides its own malloc prototype we don't need // to include the general one. if (Mang->getValueName(F) == "malloc") needsMalloc = false; if (F->hasInternalLinkage()) Out << "static "; if (F->hasLinkOnceLinkage()) Out << "inline "; // Loop over the arguments, printing them... const FunctionType *FT = cast(F->getFunctionType()); std::stringstream FunctionInnards; // Print out the name... FunctionInnards << Mang->getValueName(F) << "("; if (!F->isExternal()) { if (!F->aempty()) { std::string ArgName; if (F->abegin()->hasName() || !Prototype) ArgName = Mang->getValueName(F->abegin()); printType(FunctionInnards, F->afront().getType(), ArgName); for (Function::const_aiterator I = ++F->abegin(), E = F->aend(); I != E; ++I) { FunctionInnards << ", "; if (I->hasName() || !Prototype) ArgName = Mang->getValueName(I); else ArgName = ""; printType(FunctionInnards, I->getType(), ArgName); } } } else { // Loop over the arguments, printing them... for (FunctionType::ParamTypes::const_iterator I = FT->getParamTypes().begin(), E = FT->getParamTypes().end(); I != E; ++I) { if (I != FT->getParamTypes().begin()) FunctionInnards << ", "; printType(FunctionInnards, *I); } } // Finish printing arguments... if this is a vararg function, print the ..., // unless there are no known types, in which case, we just emit (). // if (FT->isVarArg() && !FT->getParamTypes().empty()) { if (FT->getParamTypes().size()) FunctionInnards << ", "; FunctionInnards << "..."; // Output varargs portion of signature! } else if (!FT->isVarArg() && FT->getParamTypes().empty()) { FunctionInnards << "void"; // ret() -> ret(void) in C. } FunctionInnards << ")"; // Print out the return type and the entire signature for that matter printType(Out, F->getReturnType(), FunctionInnards.str()); } void CWriter::printFunction(Function *F) { if (F->isExternal()) return; printFunctionSignature(F, false); Out << " {\n"; // Determine whether or not the function contains any invoke instructions. bool HasInvoke = false; for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) if (isa(I->getTerminator())) { HasInvoke = true; break; } // print local variable information for the function for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) if (const AllocaInst *AI = isDirectAlloca(*I)) { Out << " "; if (HasInvoke) Out << "VOLATILE_FOR_SETJMP "; printType(Out, AI->getAllocatedType(), Mang->getValueName(AI)); Out << "; /* Address exposed local */\n"; } else if ((*I)->getType() != Type::VoidTy && !isInlinableInst(**I)) { Out << " "; if (HasInvoke) Out << "VOLATILE_FOR_SETJMP "; printType(Out, (*I)->getType(), Mang->getValueName(*I)); Out << ";\n"; if (isa(*I)) { // Print out PHI node temporaries as well... Out << " "; if (HasInvoke) Out << "VOLATILE_FOR_SETJMP "; printType(Out, (*I)->getType(), Mang->getValueName(*I)+"__PHI_TEMPORARY"); Out << ";\n"; } } Out << "\n"; // print the basic blocks for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { BasicBlock *Prev = BB->getPrev(); // Don't print the label for the basic block if there are no uses, or if the // only terminator use is the predecessor basic block's terminator. We have // to scan the use list because PHI nodes use basic blocks too but do not // require a label to be generated. // bool NeedsLabel = false; for (Value::use_iterator UI = BB->use_begin(), UE = BB->use_end(); UI != UE; ++UI) if (TerminatorInst *TI = dyn_cast(*UI)) if (TI != Prev->getTerminator() || isa(Prev->getTerminator()) || isa(Prev->getTerminator())) { NeedsLabel = true; break; } if (NeedsLabel) Out << Mang->getValueName(BB) << ":\n"; // Output all of the instructions in the basic block... for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ++II){ if (!isInlinableInst(*II) && !isDirectAlloca(II)) { if (II->getType() != Type::VoidTy) outputLValue(II); else Out << " "; visit(*II); Out << ";\n"; } } // Don't emit prefix or suffix for the terminator... visit(*BB->getTerminator()); } Out << "}\n\n"; } // Specific Instruction type classes... note that all of the casts are // necessary because we use the instruction classes as opaque types... // void CWriter::visitReturnInst(ReturnInst &I) { // Don't output a void return if this is the last basic block in the function if (I.getNumOperands() == 0 && &*--I.getParent()->getParent()->end() == I.getParent() && !I.getParent()->size() == 1) { return; } Out << " return"; if (I.getNumOperands()) { Out << " "; writeOperand(I.getOperand(0)); } Out << ";\n"; } void CWriter::visitSwitchInst(SwitchInst &SI) { Out << " switch ("; writeOperand(SI.getOperand(0)); Out << ") {\n default:\n"; printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2); Out << ";\n"; for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) { Out << " case "; writeOperand(SI.getOperand(i)); Out << ":\n"; BasicBlock *Succ = cast(SI.getOperand(i+1)); printBranchToBlock(SI.getParent(), Succ, 2); if (Succ == SI.getParent()->getNext()) Out << " break;\n"; } Out << " }\n"; } void CWriter::visitInvokeInst(InvokeInst &II) { Out << " {\n" << " struct __llvm_jmpbuf_list_t Entry;\n" << " Entry.next = __llvm_jmpbuf_list;\n" << " if (setjmp(Entry.buf)) {\n" << " __llvm_jmpbuf_list = Entry.next;\n"; printBranchToBlock(II.getParent(), II.getExceptionalDest(), 4); Out << " }\n" << " __llvm_jmpbuf_list = &Entry;\n" << " "; if (II.getType() != Type::VoidTy) outputLValue(&II); visitCallSite(&II); Out << ";\n" << " __llvm_jmpbuf_list = Entry.next;\n" << " }\n"; printBranchToBlock(II.getParent(), II.getNormalDest(), 0); emittedInvoke = true; } void CWriter::visitUnwindInst(UnwindInst &I) { // The unwind instructions causes a control flow transfer out of the current // function, unwinding the stack until a caller who used the invoke // instruction is found. In this context, we code generated the invoke // instruction to add an entry to the top of the jmpbuf_list. Thus, here we // just have to longjmp to the specified handler. Out << " if (__llvm_jmpbuf_list == 0) { /* unwind */\n" << "#ifdef _LP64\n" << " extern signed long long write();\n" << "#else\n" << " extern write();\n" << "#endif\n" << " ((void (*)(int, void*, unsigned))write)(2,\n" << " \"throw found with no handler!\\n\", 31); abort();\n" << " }\n" << " longjmp(__llvm_jmpbuf_list->buf, 1);\n"; emittedInvoke = true; } bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) { // If PHI nodes need copies, we need the copy code... if (isa(To->front()) || From->getNext() != To) // Not directly successor, need goto return true; // Otherwise we don't need the code. return false; } void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ, unsigned Indent) { for (BasicBlock::iterator I = Succ->begin(); PHINode *PN = dyn_cast(I); ++I) { // now we have to do the printing Out << std::string(Indent, ' '); Out << " " << Mang->getValueName(I) << "__PHI_TEMPORARY = "; writeOperand(PN->getIncomingValue(PN->getBasicBlockIndex(CurBB))); Out << "; /* for PHI node */\n"; } if (CurBB->getNext() != Succ || isa(CurBB->getTerminator()) || isa(CurBB->getTerminator())) { Out << std::string(Indent, ' ') << " goto "; writeOperand(Succ); Out << ";\n"; } } // Branch instruction printing - Avoid printing out a branch to a basic block // that immediately succeeds the current one. // void CWriter::visitBranchInst(BranchInst &I) { if (I.isConditional()) { if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) { Out << " if ("; writeOperand(I.getCondition()); Out << ") {\n"; printBranchToBlock(I.getParent(), I.getSuccessor(0), 2); if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) { Out << " } else {\n"; printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); } } else { // First goto not necessary, assume second one is... Out << " if (!"; writeOperand(I.getCondition()); Out << ") {\n"; printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); } Out << " }\n"; } else { printBranchToBlock(I.getParent(), I.getSuccessor(0), 0); } Out << "\n"; } // PHI nodes get copied into temporary values at the end of predecessor basic // blocks. We now need to copy these temporary values into the REAL value for // the PHI. void CWriter::visitPHINode(PHINode &I) { writeOperand(&I); Out << "__PHI_TEMPORARY"; } void CWriter::visitBinaryOperator(Instruction &I) { // binary instructions, shift instructions, setCond instructions. assert(!isa(I.getType())); // We must cast the results of binary operations which might be promoted. bool needsCast = false; if ((I.getType() == Type::UByteTy) || (I.getType() == Type::SByteTy) || (I.getType() == Type::UShortTy) || (I.getType() == Type::ShortTy) || (I.getType() == Type::FloatTy)) { needsCast = true; Out << "(("; printType(Out, I.getType()); Out << ")("; } writeOperand(I.getOperand(0)); switch (I.getOpcode()) { case Instruction::Add: Out << " + "; break; case Instruction::Sub: Out << " - "; break; case Instruction::Mul: Out << "*"; break; case Instruction::Div: Out << "/"; break; case Instruction::Rem: Out << "%"; break; case Instruction::And: Out << " & "; break; case Instruction::Or: Out << " | "; break; case Instruction::Xor: Out << " ^ "; break; case Instruction::SetEQ: Out << " == "; break; case Instruction::SetNE: Out << " != "; break; case Instruction::SetLE: Out << " <= "; break; case Instruction::SetGE: Out << " >= "; break; case Instruction::SetLT: Out << " < "; break; case Instruction::SetGT: Out << " > "; break; case Instruction::Shl : Out << " << "; break; case Instruction::Shr : Out << " >> "; break; default: std::cerr << "Invalid operator type!" << I; abort(); } writeOperand(I.getOperand(1)); if (needsCast) { Out << "))"; } } void CWriter::visitCastInst(CastInst &I) { if (I.getType() == Type::BoolTy) { Out << "("; writeOperand(I.getOperand(0)); Out << " != 0)"; return; } Out << "("; printType(Out, I.getType()); Out << ")"; if (isa(I.getType())&&I.getOperand(0)->getType()->isIntegral() || isa(I.getOperand(0)->getType())&&I.getType()->isIntegral()) { // Avoid "cast to pointer from integer of different size" warnings Out << "(long)"; } writeOperand(I.getOperand(0)); } void CWriter::visitCallInst(CallInst &I) { // Handle intrinsic function calls first... if (Function *F = I.getCalledFunction()) if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { switch (ID) { default: assert(0 && "Unknown LLVM intrinsic!"); case Intrinsic::va_start: Out << "0; "; Out << "va_start(*(va_list*)&" << Mang->getValueName(&I) << ", "; // Output the last argument to the enclosing function... if (I.getParent()->getParent()->aempty()) { std::cerr << "The C backend does not currently support zero " << "argument varargs functions, such as '" << I.getParent()->getParent()->getName() << "'!\n"; abort(); } writeOperand(&I.getParent()->getParent()->aback()); Out << ")"; return; case Intrinsic::va_end: Out << "va_end(*(va_list*)&"; writeOperand(I.getOperand(1)); Out << ")"; return; case Intrinsic::va_copy: Out << "0;"; Out << "va_copy(*(va_list*)&" << Mang->getValueName(&I) << ", "; Out << "*(va_list*)&"; writeOperand(I.getOperand(1)); Out << ")"; return; case Intrinsic::setjmp: case Intrinsic::sigsetjmp: // This intrinsic should never exist in the program, but until we get // setjmp/longjmp transformations going on, we should codegen it to // something reasonable. This will allow code that never calls longjmp // to work. Out << "0"; return; case Intrinsic::longjmp: case Intrinsic::siglongjmp: // Longjmp is not implemented, and never will be. It would cause an // exception throw. Out << "abort()"; return; } } visitCallSite(&I); } void CWriter::visitCallSite(CallSite CS) { const PointerType *PTy = cast(CS.getCalledValue()->getType()); const FunctionType *FTy = cast(PTy->getElementType()); const Type *RetTy = FTy->getReturnType(); writeOperand(CS.getCalledValue()); Out << "("; if (CS.arg_begin() != CS.arg_end()) { CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); writeOperand(*AI); for (++AI; AI != AE; ++AI) { Out << ", "; writeOperand(*AI); } } Out << ")"; } void CWriter::visitMallocInst(MallocInst &I) { Out << "("; printType(Out, I.getType()); Out << ")malloc(sizeof("; printType(Out, I.getType()->getElementType()); Out << ")"; if (I.isArrayAllocation()) { Out << " * " ; writeOperand(I.getOperand(0)); } Out << ")"; } void CWriter::visitAllocaInst(AllocaInst &I) { Out << "("; printType(Out, I.getType()); Out << ") alloca(sizeof("; printType(Out, I.getType()->getElementType()); Out << ")"; if (I.isArrayAllocation()) { Out << " * " ; writeOperand(I.getOperand(0)); } Out << ")"; } void CWriter::visitFreeInst(FreeInst &I) { Out << "free((char*)"; writeOperand(I.getOperand(0)); Out << ")"; } void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I, gep_type_iterator E) { bool HasImplicitAddress = false; // If accessing a global value with no indexing, avoid *(&GV) syndrome if (GlobalValue *V = dyn_cast(Ptr)) { HasImplicitAddress = true; } else if (ConstantPointerRef *CPR = dyn_cast(Ptr)) { HasImplicitAddress = true; Ptr = CPR->getValue(); // Get to the global... } else if (isDirectAlloca(Ptr)) { HasImplicitAddress = true; } if (I == E) { if (!HasImplicitAddress) Out << "*"; // Implicit zero first argument: '*x' is equivalent to 'x[0]' writeOperandInternal(Ptr); return; } const Constant *CI = dyn_cast(I.getOperand()); if (HasImplicitAddress && (!CI || !CI->isNullValue())) Out << "(&"; writeOperandInternal(Ptr); if (HasImplicitAddress && (!CI || !CI->isNullValue())) { Out << ")"; HasImplicitAddress = false; // HIA is only true if we haven't addressed yet } assert(!HasImplicitAddress || (CI && CI->isNullValue()) && "Can only have implicit address with direct accessing"); if (HasImplicitAddress) { ++I; } else if (CI && CI->isNullValue()) { gep_type_iterator TmpI = I; ++TmpI; // Print out the -> operator if possible... if (TmpI != E && isa(*TmpI)) { Out << (HasImplicitAddress ? "." : "->"); Out << "field" << cast(TmpI.getOperand())->getValue(); I = ++TmpI; } } for (; I != E; ++I) if (isa(*I)) { Out << ".field" << cast(I.getOperand())->getValue(); } else { Out << "["; writeOperand(I.getOperand()); Out << "]"; } } void CWriter::visitLoadInst(LoadInst &I) { Out << "*"; writeOperand(I.getOperand(0)); } void CWriter::visitStoreInst(StoreInst &I) { Out << "*"; writeOperand(I.getPointerOperand()); Out << " = "; writeOperand(I.getOperand(0)); } void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) { Out << "&"; printIndexingExpression(I.getPointerOperand(), gep_type_begin(I), gep_type_end(I)); } void CWriter::visitVANextInst(VANextInst &I) { Out << Mang->getValueName(I.getOperand(0)); Out << "; va_arg(*(va_list*)&" << Mang->getValueName(&I) << ", "; printType(Out, I.getArgType()); Out << ")"; } void CWriter::visitVAArgInst(VAArgInst &I) { Out << "0;\n"; Out << "{ va_list Tmp; va_copy(Tmp, *(va_list*)&"; writeOperand(I.getOperand(0)); Out << ");\n " << Mang->getValueName(&I) << " = va_arg(Tmp, "; printType(Out, I.getType()); Out << ");\n va_end(Tmp); }"; } } //===----------------------------------------------------------------------===// // External Interface declaration //===----------------------------------------------------------------------===// Pass *createWriteToCPass(std::ostream &o) { return new CWriter(o); } } // End llvm namespace