//==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the Emit routines for the SelectionDAG class, which creates // MachineInstrs based on the decisions of the SelectionDAG instruction // selection. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "instr-emitter" #include "InstrEmitter.h" #include "SDNodeDbgValue.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" using namespace llvm; /// CountResults - The results of target nodes have register or immediate /// operands first, then an optional chain, and optional flag operands (which do /// not go into the resulting MachineInstr). unsigned InstrEmitter::CountResults(SDNode *Node) { unsigned N = Node->getNumValues(); while (N && Node->getValueType(N - 1) == MVT::Flag) --N; if (N && Node->getValueType(N - 1) == MVT::Other) --N; // Skip over chain result. return N; } /// CountOperands - The inputs to target nodes have any actual inputs first, /// followed by an optional chain operand, then an optional flag operand. /// Compute the number of actual operands that will go into the resulting /// MachineInstr. unsigned InstrEmitter::CountOperands(SDNode *Node) { unsigned N = Node->getNumOperands(); while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag) --N; if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) --N; // Ignore chain if it exists. return N; } /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an /// implicit physical register output. void InstrEmitter:: EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned, unsigned SrcReg, DenseMap &VRBaseMap) { unsigned VRBase = 0; if (TargetRegisterInfo::isVirtualRegister(SrcReg)) { // Just use the input register directly! SDValue Op(Node, ResNo); if (IsClone) VRBaseMap.erase(Op); bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second; isNew = isNew; // Silence compiler warning. assert(isNew && "Node emitted out of order - early"); return; } // If the node is only used by a CopyToReg and the dest reg is a vreg, use // the CopyToReg'd destination register instead of creating a new vreg. bool MatchReg = true; const TargetRegisterClass *UseRC = NULL; if (!IsClone && !IsCloned) for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); UI != E; ++UI) { SDNode *User = *UI; bool Match = true; if (User->getOpcode() == ISD::CopyToReg && User->getOperand(2).getNode() == Node && User->getOperand(2).getResNo() == ResNo) { unsigned DestReg = cast(User->getOperand(1))->getReg(); if (TargetRegisterInfo::isVirtualRegister(DestReg)) { VRBase = DestReg; Match = false; } else if (DestReg != SrcReg) Match = false; } else { for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { SDValue Op = User->getOperand(i); if (Op.getNode() != Node || Op.getResNo() != ResNo) continue; EVT VT = Node->getValueType(Op.getResNo()); if (VT == MVT::Other || VT == MVT::Flag) continue; Match = false; if (User->isMachineOpcode()) { const TargetInstrDesc &II = TII->get(User->getMachineOpcode()); const TargetRegisterClass *RC = 0; if (i+II.getNumDefs() < II.getNumOperands()) RC = II.OpInfo[i+II.getNumDefs()].getRegClass(TRI); if (!UseRC) UseRC = RC; else if (RC) { const TargetRegisterClass *ComRC = getCommonSubClass(UseRC, RC); // If multiple uses expect disjoint register classes, we emit // copies in AddRegisterOperand. if (ComRC) UseRC = ComRC; } } } } MatchReg &= Match; if (VRBase) break; } EVT VT = Node->getValueType(ResNo); const TargetRegisterClass *SrcRC = 0, *DstRC = 0; SrcRC = TRI->getPhysicalRegisterRegClass(SrcReg, VT); // Figure out the register class to create for the destreg. if (VRBase) { DstRC = MRI->getRegClass(VRBase); } else if (UseRC) { assert(UseRC->hasType(VT) && "Incompatible phys register def and uses!"); DstRC = UseRC; } else { DstRC = TLI->getRegClassFor(VT); } // If all uses are reading from the src physical register and copying the // register is either impossible or very expensive, then don't create a copy. if (MatchReg && SrcRC->getCopyCost() < 0) { VRBase = SrcReg; } else { // Create the reg, emit the copy. VRBase = MRI->createVirtualRegister(DstRC); bool Emitted = TII->copyRegToReg(*MBB, InsertPos, VRBase, SrcReg, DstRC, SrcRC); assert(Emitted && "Unable to issue a copy instruction!\n"); (void) Emitted; } SDValue Op(Node, ResNo); if (IsClone) VRBaseMap.erase(Op); bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; isNew = isNew; // Silence compiler warning. assert(isNew && "Node emitted out of order - early"); } /// getDstOfCopyToRegUse - If the only use of the specified result number of /// node is a CopyToReg, return its destination register. Return 0 otherwise. unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node, unsigned ResNo) const { if (!Node->hasOneUse()) return 0; SDNode *User = *Node->use_begin(); if (User->getOpcode() == ISD::CopyToReg && User->getOperand(2).getNode() == Node && User->getOperand(2).getResNo() == ResNo) { unsigned Reg = cast(User->getOperand(1))->getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) return Reg; } return 0; } void InstrEmitter::CreateVirtualRegisters(SDNode *Node, MachineInstr *MI, const TargetInstrDesc &II, bool IsClone, bool IsCloned, DenseMap &VRBaseMap) { assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF && "IMPLICIT_DEF should have been handled as a special case elsewhere!"); for (unsigned i = 0; i < II.getNumDefs(); ++i) { // If the specific node value is only used by a CopyToReg and the dest reg // is a vreg in the same register class, use the CopyToReg'd destination // register instead of creating a new vreg. unsigned VRBase = 0; const TargetRegisterClass *RC = II.OpInfo[i].getRegClass(TRI); if (II.OpInfo[i].isOptionalDef()) { // Optional def must be a physical register. unsigned NumResults = CountResults(Node); VRBase = cast(Node->getOperand(i-NumResults))->getReg(); assert(TargetRegisterInfo::isPhysicalRegister(VRBase)); MI->addOperand(MachineOperand::CreateReg(VRBase, true)); } if (!VRBase && !IsClone && !IsCloned) for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); UI != E; ++UI) { SDNode *User = *UI; if (User->getOpcode() == ISD::CopyToReg && User->getOperand(2).getNode() == Node && User->getOperand(2).getResNo() == i) { unsigned Reg = cast(User->getOperand(1))->getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { const TargetRegisterClass *RegRC = MRI->getRegClass(Reg); if (RegRC == RC) { VRBase = Reg; MI->addOperand(MachineOperand::CreateReg(Reg, true)); break; } } } } // Create the result registers for this node and add the result regs to // the machine instruction. if (VRBase == 0) { assert(RC && "Isn't a register operand!"); VRBase = MRI->createVirtualRegister(RC); MI->addOperand(MachineOperand::CreateReg(VRBase, true)); } SDValue Op(Node, i); if (IsClone) VRBaseMap.erase(Op); bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; isNew = isNew; // Silence compiler warning. assert(isNew && "Node emitted out of order - early"); } } /// getVR - Return the virtual register corresponding to the specified result /// of the specified node. unsigned InstrEmitter::getVR(SDValue Op, DenseMap &VRBaseMap) { if (Op.isMachineOpcode() && Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { // Add an IMPLICIT_DEF instruction before every use. unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo()); // IMPLICIT_DEF can produce any type of result so its TargetInstrDesc // does not include operand register class info. if (!VReg) { const TargetRegisterClass *RC = TLI->getRegClassFor(Op.getValueType()); VReg = MRI->createVirtualRegister(RC); } BuildMI(MBB, Op.getDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF), VReg); return VReg; } DenseMap::iterator I = VRBaseMap.find(Op); assert(I != VRBaseMap.end() && "Node emitted out of order - late"); return I->second; } /// AddRegisterOperand - Add the specified register as an operand to the /// specified machine instr. Insert register copies if the register is /// not in the required register class. void InstrEmitter::AddRegisterOperand(MachineInstr *MI, SDValue Op, unsigned IIOpNum, const TargetInstrDesc *II, DenseMap &VRBaseMap, bool IsDebug) { assert(Op.getValueType() != MVT::Other && Op.getValueType() != MVT::Flag && "Chain and flag operands should occur at end of operand list!"); // Get/emit the operand. unsigned VReg = getVR(Op, VRBaseMap); assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); const TargetInstrDesc &TID = MI->getDesc(); bool isOptDef = IIOpNum < TID.getNumOperands() && TID.OpInfo[IIOpNum].isOptionalDef(); // If the instruction requires a register in a different class, create // a new virtual register and copy the value into it. if (II) { const TargetRegisterClass *SrcRC = MRI->getRegClass(VReg); const TargetRegisterClass *DstRC = 0; if (IIOpNum < II->getNumOperands()) DstRC = II->OpInfo[IIOpNum].getRegClass(TRI); assert((DstRC || (TID.isVariadic() && IIOpNum >= TID.getNumOperands())) && "Don't have operand info for this instruction!"); if (DstRC && SrcRC != DstRC && !SrcRC->hasSuperClass(DstRC)) { unsigned NewVReg = MRI->createVirtualRegister(DstRC); bool Emitted = TII->copyRegToReg(*MBB, InsertPos, NewVReg, VReg, DstRC, SrcRC); assert(Emitted && "Unable to issue a copy instruction!\n"); (void) Emitted; VReg = NewVReg; } } #if 0 // If this value has only one use, that use is a kill. This is a // conservative approximation. Tied operands are never killed, so we need // to check that. And that means we need to determine the index of the // operand. unsigned Idx = MI->getNumOperands(); while (Idx > 0 && MI->getOperand(Idx-1).isReg() && MI->getOperand(Idx-1).isImplicit()) --Idx; bool isTied = MI->getDesc().getOperandConstraint(Idx, TOI::TIED_TO) != -1; bool isKill = Op.hasOneUse() && !isTied; #else bool isKill = false; #endif MI->addOperand(MachineOperand::CreateReg(VReg, isOptDef, false/*isImp*/, isKill, false/*isDead*/, false/*isUndef*/, false/*isEarlyClobber*/, 0/*SubReg*/, IsDebug)); } /// AddOperand - Add the specified operand to the specified machine instr. II /// specifies the instruction information for the node, and IIOpNum is the /// operand number (in the II) that we are adding. IIOpNum and II are used for /// assertions only. void InstrEmitter::AddOperand(MachineInstr *MI, SDValue Op, unsigned IIOpNum, const TargetInstrDesc *II, DenseMap &VRBaseMap, bool IsDebug) { if (Op.isMachineOpcode()) { AddRegisterOperand(MI, Op, IIOpNum, II, VRBaseMap, IsDebug); } else if (ConstantSDNode *C = dyn_cast(Op)) { MI->addOperand(MachineOperand::CreateImm(C->getSExtValue())); } else if (ConstantFPSDNode *F = dyn_cast(Op)) { const ConstantFP *CFP = F->getConstantFPValue(); MI->addOperand(MachineOperand::CreateFPImm(CFP)); } else if (RegisterSDNode *R = dyn_cast(Op)) { MI->addOperand(MachineOperand::CreateReg(R->getReg(), false)); } else if (GlobalAddressSDNode *TGA = dyn_cast(Op)) { MI->addOperand(MachineOperand::CreateGA(TGA->getGlobal(), TGA->getOffset(), TGA->getTargetFlags())); } else if (BasicBlockSDNode *BBNode = dyn_cast(Op)) { MI->addOperand(MachineOperand::CreateMBB(BBNode->getBasicBlock())); } else if (FrameIndexSDNode *FI = dyn_cast(Op)) { MI->addOperand(MachineOperand::CreateFI(FI->getIndex())); } else if (JumpTableSDNode *JT = dyn_cast(Op)) { MI->addOperand(MachineOperand::CreateJTI(JT->getIndex(), JT->getTargetFlags())); } else if (ConstantPoolSDNode *CP = dyn_cast(Op)) { int Offset = CP->getOffset(); unsigned Align = CP->getAlignment(); const Type *Type = CP->getType(); // MachineConstantPool wants an explicit alignment. if (Align == 0) { Align = TM->getTargetData()->getPrefTypeAlignment(Type); if (Align == 0) { // Alignment of vector types. FIXME! Align = TM->getTargetData()->getTypeAllocSize(Type); } } unsigned Idx; MachineConstantPool *MCP = MF->getConstantPool(); if (CP->isMachineConstantPoolEntry()) Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align); else Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align); MI->addOperand(MachineOperand::CreateCPI(Idx, Offset, CP->getTargetFlags())); } else if (ExternalSymbolSDNode *ES = dyn_cast(Op)) { MI->addOperand(MachineOperand::CreateES(ES->getSymbol(), ES->getTargetFlags())); } else if (BlockAddressSDNode *BA = dyn_cast(Op)) { MI->addOperand(MachineOperand::CreateBA(BA->getBlockAddress(), BA->getTargetFlags())); } else { assert(Op.getValueType() != MVT::Other && Op.getValueType() != MVT::Flag && "Chain and flag operands should occur at end of operand list!"); AddRegisterOperand(MI, Op, IIOpNum, II, VRBaseMap, IsDebug); } } /// getSuperRegisterRegClass - Returns the register class of a superreg A whose /// "SubIdx"'th sub-register class is the specified register class and whose /// type matches the specified type. static const TargetRegisterClass* getSuperRegisterRegClass(const TargetRegisterClass *TRC, unsigned SubIdx, EVT VT) { // Pick the register class of the superegister for this type for (TargetRegisterInfo::regclass_iterator I = TRC->superregclasses_begin(), E = TRC->superregclasses_end(); I != E; ++I) if ((*I)->hasType(VT) && (*I)->getSubRegisterRegClass(SubIdx) == TRC) return *I; assert(false && "Couldn't find the register class"); return 0; } /// EmitSubregNode - Generate machine code for subreg nodes. /// void InstrEmitter::EmitSubregNode(SDNode *Node, DenseMap &VRBaseMap){ unsigned VRBase = 0; unsigned Opc = Node->getMachineOpcode(); // If the node is only used by a CopyToReg and the dest reg is a vreg, use // the CopyToReg'd destination register instead of creating a new vreg. for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); UI != E; ++UI) { SDNode *User = *UI; if (User->getOpcode() == ISD::CopyToReg && User->getOperand(2).getNode() == Node) { unsigned DestReg = cast(User->getOperand(1))->getReg(); if (TargetRegisterInfo::isVirtualRegister(DestReg)) { VRBase = DestReg; break; } } } if (Opc == TargetOpcode::EXTRACT_SUBREG) { unsigned SubIdx = cast(Node->getOperand(1))->getZExtValue(); // Create the extract_subreg machine instruction. MachineInstr *MI = BuildMI(*MF, Node->getDebugLoc(), TII->get(TargetOpcode::EXTRACT_SUBREG)); // Figure out the register class to create for the destreg. unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); const TargetRegisterClass *TRC = MRI->getRegClass(VReg); const TargetRegisterClass *SRC = TRC->getSubRegisterRegClass(SubIdx); assert(SRC && "Invalid subregister index in EXTRACT_SUBREG"); // Figure out the register class to create for the destreg. // Note that if we're going to directly use an existing register, // it must be precisely the required class, and not a subclass // thereof. if (VRBase == 0 || SRC != MRI->getRegClass(VRBase)) { // Create the reg assert(SRC && "Couldn't find source register class"); VRBase = MRI->createVirtualRegister(SRC); } // Add def, source, and subreg index MI->addOperand(MachineOperand::CreateReg(VRBase, true)); AddOperand(MI, Node->getOperand(0), 0, 0, VRBaseMap); MI->addOperand(MachineOperand::CreateImm(SubIdx)); MBB->insert(InsertPos, MI); } else if (Opc == TargetOpcode::INSERT_SUBREG || Opc == TargetOpcode::SUBREG_TO_REG) { SDValue N0 = Node->getOperand(0); SDValue N1 = Node->getOperand(1); SDValue N2 = Node->getOperand(2); unsigned SubReg = getVR(N1, VRBaseMap); unsigned SubIdx = cast(N2)->getZExtValue(); const TargetRegisterClass *TRC = MRI->getRegClass(SubReg); const TargetRegisterClass *SRC = getSuperRegisterRegClass(TRC, SubIdx, Node->getValueType(0)); // Figure out the register class to create for the destreg. // Note that if we're going to directly use an existing register, // it must be precisely the required class, and not a subclass // thereof. if (VRBase == 0 || SRC != MRI->getRegClass(VRBase)) { // Create the reg assert(SRC && "Couldn't find source register class"); VRBase = MRI->createVirtualRegister(SRC); } // Create the insert_subreg or subreg_to_reg machine instruction. MachineInstr *MI = BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc)); MI->addOperand(MachineOperand::CreateReg(VRBase, true)); // If creating a subreg_to_reg, then the first input operand // is an implicit value immediate, otherwise it's a register if (Opc == TargetOpcode::SUBREG_TO_REG) { const ConstantSDNode *SD = cast(N0); MI->addOperand(MachineOperand::CreateImm(SD->getZExtValue())); } else AddOperand(MI, N0, 0, 0, VRBaseMap); // Add the subregster being inserted AddOperand(MI, N1, 0, 0, VRBaseMap); MI->addOperand(MachineOperand::CreateImm(SubIdx)); MBB->insert(InsertPos, MI); } else llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg"); SDValue Op(Node, 0); bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; isNew = isNew; // Silence compiler warning. assert(isNew && "Node emitted out of order - early"); } /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes. /// COPY_TO_REGCLASS is just a normal copy, except that the destination /// register is constrained to be in a particular register class. /// void InstrEmitter::EmitCopyToRegClassNode(SDNode *Node, DenseMap &VRBaseMap) { unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); const TargetRegisterClass *SrcRC = MRI->getRegClass(VReg); unsigned DstRCIdx = cast(Node->getOperand(1))->getZExtValue(); const TargetRegisterClass *DstRC = TRI->getRegClass(DstRCIdx); // Create the new VReg in the destination class and emit a copy. unsigned NewVReg = MRI->createVirtualRegister(DstRC); bool Emitted = TII->copyRegToReg(*MBB, InsertPos, NewVReg, VReg, DstRC, SrcRC); assert(Emitted && "Unable to issue a copy instruction for a COPY_TO_REGCLASS node!\n"); (void) Emitted; SDValue Op(Node, 0); bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; isNew = isNew; // Silence compiler warning. assert(isNew && "Node emitted out of order - early"); } /// EmitDbgValue - Generate machine instruction for a dbg_value node. /// MachineInstr * InstrEmitter::EmitDbgValue(SDDbgValue *SD, DenseMap &VRBaseMap) { uint64_t Offset = SD->getOffset(); MDNode* MDPtr = SD->getMDPtr(); DebugLoc DL = SD->getDebugLoc(); if (SD->getKind() == SDDbgValue::FRAMEIX) { // Stack address; this needs to be lowered in target-dependent fashion. // EmitTargetCodeForFrameDebugValue is responsible for allocation. unsigned FrameIx = SD->getFrameIx(); return TII->emitFrameIndexDebugValue(*MF, FrameIx, Offset, MDPtr, DL); } // Otherwise, we're going to create an instruction here. const TargetInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE); MachineInstrBuilder MIB = BuildMI(*MF, DL, II); if (SD->getKind() == SDDbgValue::SDNODE) { SDNode *Node = SD->getSDNode(); SDValue Op = SDValue(Node, SD->getResNo()); // It's possible we replaced this SDNode with other(s) and therefore // didn't generate code for it. It's better to catch these cases where // they happen and transfer the debug info, but trying to guarantee that // in all cases would be very fragile; this is a safeguard for any // that were missed. DenseMap::iterator I = VRBaseMap.find(Op); if (I==VRBaseMap.end()) MIB.addReg(0U); // undef else AddOperand(&*MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap, true /*IsDebug*/); } else if (SD->getKind() == SDDbgValue::CONST) { const Value *V = SD->getConst(); if (const ConstantInt *CI = dyn_cast(V)) { MIB.addImm(CI->getSExtValue()); } else if (const ConstantFP *CF = dyn_cast(V)) { MIB.addFPImm(CF); } else { // Could be an Undef. In any case insert an Undef so we can see what we // dropped. MIB.addReg(0U); } } else { // Insert an Undef so we can see what we dropped. MIB.addReg(0U); } MIB.addImm(Offset).addMetadata(MDPtr); return &*MIB; } /// EmitMachineNode - Generate machine code for a target-specific node and /// needed dependencies. /// void InstrEmitter:: EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned, DenseMap &VRBaseMap, DenseMap *EM) { unsigned Opc = Node->getMachineOpcode(); // Handle subreg insert/extract specially if (Opc == TargetOpcode::EXTRACT_SUBREG || Opc == TargetOpcode::INSERT_SUBREG || Opc == TargetOpcode::SUBREG_TO_REG) { EmitSubregNode(Node, VRBaseMap); return; } // Handle COPY_TO_REGCLASS specially. if (Opc == TargetOpcode::COPY_TO_REGCLASS) { EmitCopyToRegClassNode(Node, VRBaseMap); return; } if (Opc == TargetOpcode::IMPLICIT_DEF) // We want a unique VR for each IMPLICIT_DEF use. return; const TargetInstrDesc &II = TII->get(Opc); unsigned NumResults = CountResults(Node); unsigned NodeOperands = CountOperands(Node); bool HasPhysRegOuts = NumResults > II.getNumDefs() && II.getImplicitDefs()!=0; #ifndef NDEBUG unsigned NumMIOperands = NodeOperands + NumResults; if (II.isVariadic()) assert(NumMIOperands >= II.getNumOperands() && "Too few operands for a variadic node!"); else assert(NumMIOperands >= II.getNumOperands() && NumMIOperands <= II.getNumOperands()+II.getNumImplicitDefs() && "#operands for dag node doesn't match .td file!"); #endif // Create the new machine instruction. MachineInstr *MI = BuildMI(*MF, Node->getDebugLoc(), II); // Add result register values for things that are defined by this // instruction. if (NumResults) CreateVirtualRegisters(Node, MI, II, IsClone, IsCloned, VRBaseMap); // Emit all of the actual operands of this instruction, adding them to the // instruction as appropriate. bool HasOptPRefs = II.getNumDefs() > NumResults; assert((!HasOptPRefs || !HasPhysRegOuts) && "Unable to cope with optional defs and phys regs defs!"); unsigned NumSkip = HasOptPRefs ? II.getNumDefs() - NumResults : 0; for (unsigned i = NumSkip; i != NodeOperands; ++i) AddOperand(MI, Node->getOperand(i), i-NumSkip+II.getNumDefs(), &II, VRBaseMap); // Transfer all of the memory reference descriptions of this instruction. MI->setMemRefs(cast(Node)->memoperands_begin(), cast(Node)->memoperands_end()); if (II.usesCustomInsertionHook()) { // Insert this instruction into the basic block using a target // specific inserter which may returns a new basic block. MBB = TLI->EmitInstrWithCustomInserter(MI, MBB, EM); InsertPos = MBB->end(); return; } MBB->insert(InsertPos, MI); // Additional results must be an physical register def. if (HasPhysRegOuts) { for (unsigned i = II.getNumDefs(); i < NumResults; ++i) { unsigned Reg = II.getImplicitDefs()[i - II.getNumDefs()]; if (Node->hasAnyUseOfValue(i)) EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap); // If there are no uses, mark the register as dead now, so that // MachineLICM/Sink can see that it's dead. Don't do this if the // node has a Flag value, for the benefit of targets still using // Flag for values in physregs. else if (Node->getValueType(Node->getNumValues()-1) != MVT::Flag) MI->addRegisterDead(Reg, TRI); } } // If the instruction has implicit defs and the node doesn't, mark the // implicit def as dead. If the node has any flag outputs, we don't do this // because we don't know what implicit defs are being used by flagged nodes. if (Node->getValueType(Node->getNumValues()-1) != MVT::Flag) if (const unsigned *IDList = II.getImplicitDefs()) { for (unsigned i = NumResults, e = II.getNumDefs()+II.getNumImplicitDefs(); i != e; ++i) MI->addRegisterDead(IDList[i-II.getNumDefs()], TRI); } } /// EmitSpecialNode - Generate machine code for a target-independent node and /// needed dependencies. void InstrEmitter:: EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned, DenseMap &VRBaseMap) { switch (Node->getOpcode()) { default: #ifndef NDEBUG Node->dump(); #endif llvm_unreachable("This target-independent node should have been selected!"); break; case ISD::EntryToken: llvm_unreachable("EntryToken should have been excluded from the schedule!"); break; case ISD::MERGE_VALUES: case ISD::TokenFactor: // fall thru break; case ISD::CopyToReg: { unsigned SrcReg; SDValue SrcVal = Node->getOperand(2); if (RegisterSDNode *R = dyn_cast(SrcVal)) SrcReg = R->getReg(); else SrcReg = getVR(SrcVal, VRBaseMap); unsigned DestReg = cast(Node->getOperand(1))->getReg(); if (SrcReg == DestReg) // Coalesced away the copy? Ignore. break; const TargetRegisterClass *SrcTRC = 0, *DstTRC = 0; // Get the register classes of the src/dst. if (TargetRegisterInfo::isVirtualRegister(SrcReg)) SrcTRC = MRI->getRegClass(SrcReg); else SrcTRC = TRI->getPhysicalRegisterRegClass(SrcReg,SrcVal.getValueType()); if (TargetRegisterInfo::isVirtualRegister(DestReg)) DstTRC = MRI->getRegClass(DestReg); else DstTRC = TRI->getPhysicalRegisterRegClass(DestReg, Node->getOperand(1).getValueType()); bool Emitted = TII->copyRegToReg(*MBB, InsertPos, DestReg, SrcReg, DstTRC, SrcTRC); assert(Emitted && "Unable to issue a copy instruction!\n"); (void) Emitted; break; } case ISD::CopyFromReg: { unsigned SrcReg = cast(Node->getOperand(1))->getReg(); EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap); break; } case ISD::EH_LABEL: { MCSymbol *S = cast(Node)->getLabel(); BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::EH_LABEL)).addSym(S); break; } case ISD::INLINEASM: { unsigned NumOps = Node->getNumOperands(); if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag) --NumOps; // Ignore the flag operand. // Create the inline asm machine instruction. MachineInstr *MI = BuildMI(*MF, Node->getDebugLoc(), TII->get(TargetOpcode::INLINEASM)); // Add the asm string as an external symbol operand. SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString); const char *AsmStr = cast(AsmStrV)->getSymbol(); MI->addOperand(MachineOperand::CreateES(AsmStr)); // Add all of the operand registers to the instruction. for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { unsigned Flags = cast(Node->getOperand(i))->getZExtValue(); unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); MI->addOperand(MachineOperand::CreateImm(Flags)); ++i; // Skip the ID value. switch (InlineAsm::getKind(Flags)) { default: llvm_unreachable("Bad flags!"); case InlineAsm::Kind_RegDef: for (; NumVals; --NumVals, ++i) { unsigned Reg = cast(Node->getOperand(i))->getReg(); MI->addOperand(MachineOperand::CreateReg(Reg, true)); } break; case InlineAsm::Kind_RegDefEarlyClobber: for (; NumVals; --NumVals, ++i) { unsigned Reg = cast(Node->getOperand(i))->getReg(); MI->addOperand(MachineOperand::CreateReg(Reg, true, false, false, false, false, true)); } break; case InlineAsm::Kind_RegUse: // Use of register. case InlineAsm::Kind_Imm: // Immediate. case InlineAsm::Kind_Mem: // Addressing mode. // The addressing mode has been selected, just add all of the // operands to the machine instruction. for (; NumVals; --NumVals, ++i) AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap); break; } } // Get the mdnode from the asm if it exists and add it to the instruction. SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode); const MDNode *MD = cast(MDV)->getMD(); if (MD) MI->addOperand(MachineOperand::CreateMetadata(MD)); MBB->insert(InsertPos, MI); break; } } } /// InstrEmitter - Construct an InstrEmitter and set it to start inserting /// at the given position in the given block. InstrEmitter::InstrEmitter(MachineBasicBlock *mbb, MachineBasicBlock::iterator insertpos) : MF(mbb->getParent()), MRI(&MF->getRegInfo()), TM(&MF->getTarget()), TII(TM->getInstrInfo()), TRI(TM->getRegisterInfo()), TLI(TM->getTargetLowering()), MBB(mbb), InsertPos(insertpos) { }