//===-- Value.cpp - Implement the Value class -----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Value, ValueHandle, and User classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/Value.h" #include "LLVMContextImpl.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LeakDetector.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/ValueHandle.h" #include "llvm/IR/ValueSymbolTable.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // Value Class //===----------------------------------------------------------------------===// static inline Type *checkType(Type *Ty) { assert(Ty && "Value defined with a null type: Error!"); return Ty; } Value::Value(Type *ty, unsigned scid) : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), SubclassOptionalData(0), SubclassData(0), NumOperands(0) { // FIXME: Why isn't this in the subclass gunk?? // Note, we cannot call isa before the CallInst has been // constructed. if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke) assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && "invalid CallInst type!"); else if (SubclassID != BasicBlockVal && (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal)) assert((VTy->isFirstClassType() || VTy->isVoidTy()) && "Cannot create non-first-class values except for constants!"); } Value::~Value() { // Notify all ValueHandles (if present) that this value is going away. if (HasValueHandle) ValueHandleBase::ValueIsDeleted(this); if (isUsedByMetadata()) ValueAsMetadata::handleDeletion(this); #ifndef NDEBUG // Only in -g mode... // Check to make sure that there are no uses of this value that are still // around when the value is destroyed. If there are, then we have a dangling // reference and something is wrong. This code is here to print out what is // still being referenced. The value in question should be printed as // a // if (!use_empty()) { dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; for (use_iterator I = use_begin(), E = use_end(); I != E; ++I) dbgs() << "Use still stuck around after Def is destroyed:" << **I << "\n"; } #endif assert(use_empty() && "Uses remain when a value is destroyed!"); // If this value is named, destroy the name. This should not be in a symtab // at this point. destroyValueName(); // There should be no uses of this object anymore, remove it. LeakDetector::removeGarbageObject(this); } void Value::destroyValueName() { ValueName *Name = getValueName(); if (Name) Name->Destroy(); setValueName(nullptr); } bool Value::hasNUses(unsigned N) const { const_use_iterator UI = use_begin(), E = use_end(); for (; N; --N, ++UI) if (UI == E) return false; // Too few. return UI == E; } bool Value::hasNUsesOrMore(unsigned N) const { const_use_iterator UI = use_begin(), E = use_end(); for (; N; --N, ++UI) if (UI == E) return false; // Too few. return true; } bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { // This can be computed either by scanning the instructions in BB, or by // scanning the use list of this Value. Both lists can be very long, but // usually one is quite short. // // Scan both lists simultaneously until one is exhausted. This limits the // search to the shorter list. BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); const_user_iterator UI = user_begin(), UE = user_end(); for (; BI != BE && UI != UE; ++BI, ++UI) { // Scan basic block: Check if this Value is used by the instruction at BI. if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end()) return true; // Scan use list: Check if the use at UI is in BB. const Instruction *User = dyn_cast(*UI); if (User && User->getParent() == BB) return true; } return false; } unsigned Value::getNumUses() const { return (unsigned)std::distance(use_begin(), use_end()); } static bool getSymTab(Value *V, ValueSymbolTable *&ST) { ST = nullptr; if (Instruction *I = dyn_cast(V)) { if (BasicBlock *P = I->getParent()) if (Function *PP = P->getParent()) ST = &PP->getValueSymbolTable(); } else if (BasicBlock *BB = dyn_cast(V)) { if (Function *P = BB->getParent()) ST = &P->getValueSymbolTable(); } else if (GlobalValue *GV = dyn_cast(V)) { if (Module *P = GV->getParent()) ST = &P->getValueSymbolTable(); } else if (Argument *A = dyn_cast(V)) { if (Function *P = A->getParent()) ST = &P->getValueSymbolTable(); } else { assert(isa(V) && "Unknown value type!"); return true; // no name is setable for this. } return false; } StringRef Value::getName() const { // Make sure the empty string is still a C string. For historical reasons, // some clients want to call .data() on the result and expect it to be null // terminated. if (!getValueName()) return StringRef("", 0); return getValueName()->getKey(); } void Value::setName(const Twine &NewName) { // Fast path for common IRBuilder case of setName("") when there is no name. if (NewName.isTriviallyEmpty() && !hasName()) return; SmallString<256> NameData; StringRef NameRef = NewName.toStringRef(NameData); assert(NameRef.find_first_of(0) == StringRef::npos && "Null bytes are not allowed in names"); // Name isn't changing? if (getName() == NameRef) return; assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); // Get the symbol table to update for this object. ValueSymbolTable *ST; if (getSymTab(this, ST)) return; // Cannot set a name on this value (e.g. constant). if (Function *F = dyn_cast(this)) getContext().pImpl->IntrinsicIDCache.erase(F); if (!ST) { // No symbol table to update? Just do the change. if (NameRef.empty()) { // Free the name for this value. destroyValueName(); return; } // NOTE: Could optimize for the case the name is shrinking to not deallocate // then reallocated. destroyValueName(); // Create the new name. setValueName(ValueName::Create(NameRef)); getValueName()->setValue(this); return; } // NOTE: Could optimize for the case the name is shrinking to not deallocate // then reallocated. if (hasName()) { // Remove old name. ST->removeValueName(getValueName()); destroyValueName(); if (NameRef.empty()) return; } // Name is changing to something new. setValueName(ST->createValueName(NameRef, this)); } void Value::takeName(Value *V) { ValueSymbolTable *ST = nullptr; // If this value has a name, drop it. if (hasName()) { // Get the symtab this is in. if (getSymTab(this, ST)) { // We can't set a name on this value, but we need to clear V's name if // it has one. if (V->hasName()) V->setName(""); return; // Cannot set a name on this value (e.g. constant). } // Remove old name. if (ST) ST->removeValueName(getValueName()); destroyValueName(); } // Now we know that this has no name. // If V has no name either, we're done. if (!V->hasName()) return; // Get this's symtab if we didn't before. if (!ST) { if (getSymTab(this, ST)) { // Clear V's name. V->setName(""); return; // Cannot set a name on this value (e.g. constant). } } // Get V's ST, this should always succed, because V has a name. ValueSymbolTable *VST; bool Failure = getSymTab(V, VST); assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; // If these values are both in the same symtab, we can do this very fast. // This works even if both values have no symtab yet. if (ST == VST) { // Take the name! setValueName(V->getValueName()); V->setValueName(nullptr); getValueName()->setValue(this); return; } // Otherwise, things are slightly more complex. Remove V's name from VST and // then reinsert it into ST. if (VST) VST->removeValueName(V->getValueName()); setValueName(V->getValueName()); V->setValueName(nullptr); getValueName()->setValue(this); if (ST) ST->reinsertValue(this); } #ifndef NDEBUG static bool contains(SmallPtrSetImpl &Cache, ConstantExpr *Expr, Constant *C) { if (!Cache.insert(Expr).second) return false; for (auto &O : Expr->operands()) { if (O == C) return true; auto *CE = dyn_cast(O); if (!CE) continue; if (contains(Cache, CE, C)) return true; } return false; } static bool contains(Value *Expr, Value *V) { if (Expr == V) return true; auto *C = dyn_cast(V); if (!C) return false; auto *CE = dyn_cast(Expr); if (!CE) return false; SmallPtrSet Cache; return contains(Cache, CE, C); } #endif void Value::replaceAllUsesWith(Value *New) { assert(New && "Value::replaceAllUsesWith() is invalid!"); assert(!contains(New, this) && "this->replaceAllUsesWith(expr(this)) is NOT valid!"); assert(New->getType() == getType() && "replaceAllUses of value with new value of different type!"); // Notify all ValueHandles (if present) that this value is going away. if (HasValueHandle) ValueHandleBase::ValueIsRAUWd(this, New); if (isUsedByMetadata()) ValueAsMetadata::handleRAUW(this, New); while (!use_empty()) { Use &U = *UseList; // Must handle Constants specially, we cannot call replaceUsesOfWith on a // constant because they are uniqued. if (auto *C = dyn_cast(U.getUser())) { if (!isa(C)) { C->replaceUsesOfWithOnConstant(this, New, &U); continue; } } U.set(New); } if (BasicBlock *BB = dyn_cast(this)) BB->replaceSuccessorsPhiUsesWith(cast(New)); } // Like replaceAllUsesWith except it does not handle constants or basic blocks. // This routine leaves uses within BB. void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { assert(New && "Value::replaceUsesOutsideBlock(, BB) is invalid!"); assert(!contains(New, this) && "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); assert(New->getType() == getType() && "replaceUses of value with new value of different type!"); assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); use_iterator UI = use_begin(), E = use_end(); for (; UI != E;) { Use &U = *UI; ++UI; auto *Usr = dyn_cast(U.getUser()); if (Usr && Usr->getParent() == BB) continue; U.set(New); } return; } namespace { // Various metrics for how much to strip off of pointers. enum PointerStripKind { PSK_ZeroIndices, PSK_ZeroIndicesAndAliases, PSK_InBoundsConstantIndices, PSK_InBounds }; template static Value *stripPointerCastsAndOffsets(Value *V) { if (!V->getType()->isPointerTy()) return V; // Even though we don't look through PHI nodes, we could be called on an // instruction in an unreachable block, which may be on a cycle. SmallPtrSet Visited; Visited.insert(V); do { if (GEPOperator *GEP = dyn_cast(V)) { switch (StripKind) { case PSK_ZeroIndicesAndAliases: case PSK_ZeroIndices: if (!GEP->hasAllZeroIndices()) return V; break; case PSK_InBoundsConstantIndices: if (!GEP->hasAllConstantIndices()) return V; // fallthrough case PSK_InBounds: if (!GEP->isInBounds()) return V; break; } V = GEP->getPointerOperand(); } else if (Operator::getOpcode(V) == Instruction::BitCast || Operator::getOpcode(V) == Instruction::AddrSpaceCast) { V = cast(V)->getOperand(0); } else if (GlobalAlias *GA = dyn_cast(V)) { if (StripKind == PSK_ZeroIndices || GA->mayBeOverridden()) return V; V = GA->getAliasee(); } else { return V; } assert(V->getType()->isPointerTy() && "Unexpected operand type!"); } while (Visited.insert(V).second); return V; } } // namespace Value *Value::stripPointerCasts() { return stripPointerCastsAndOffsets(this); } Value *Value::stripPointerCastsNoFollowAliases() { return stripPointerCastsAndOffsets(this); } Value *Value::stripInBoundsConstantOffsets() { return stripPointerCastsAndOffsets(this); } Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) { if (!getType()->isPointerTy()) return this; assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast( getType())->getAddressSpace()) && "The offset must have exactly as many bits as our pointer."); // Even though we don't look through PHI nodes, we could be called on an // instruction in an unreachable block, which may be on a cycle. SmallPtrSet Visited; Visited.insert(this); Value *V = this; do { if (GEPOperator *GEP = dyn_cast(V)) { if (!GEP->isInBounds()) return V; APInt GEPOffset(Offset); if (!GEP->accumulateConstantOffset(DL, GEPOffset)) return V; Offset = GEPOffset; V = GEP->getPointerOperand(); } else if (Operator::getOpcode(V) == Instruction::BitCast || Operator::getOpcode(V) == Instruction::AddrSpaceCast) { V = cast(V)->getOperand(0); } else if (GlobalAlias *GA = dyn_cast(V)) { V = GA->getAliasee(); } else { return V; } assert(V->getType()->isPointerTy() && "Unexpected operand type!"); } while (Visited.insert(V).second); return V; } Value *Value::stripInBoundsOffsets() { return stripPointerCastsAndOffsets(this); } /// \brief Check if Value is always a dereferenceable pointer. /// /// Test if V is always a pointer to allocated and suitably aligned memory for /// a simple load or store. static bool isDereferenceablePointer(const Value *V, const DataLayout *DL, SmallPtrSetImpl &Visited) { // Note that it is not safe to speculate into a malloc'd region because // malloc may return null. // These are obviously ok. if (isa(V)) return true; // It's not always safe to follow a bitcast, for example: // bitcast i8* (alloca i8) to i32* // would result in a 4-byte load from a 1-byte alloca. However, // if we're casting from a pointer from a type of larger size // to a type of smaller size (or the same size), and the alignment // is at least as large as for the resulting pointer type, then // we can look through the bitcast. if (DL) if (const BitCastInst* BC = dyn_cast(V)) { Type *STy = BC->getSrcTy()->getPointerElementType(), *DTy = BC->getDestTy()->getPointerElementType(); if (STy->isSized() && DTy->isSized() && (DL->getTypeStoreSize(STy) >= DL->getTypeStoreSize(DTy)) && (DL->getABITypeAlignment(STy) >= DL->getABITypeAlignment(DTy))) return isDereferenceablePointer(BC->getOperand(0), DL, Visited); } // Global variables which can't collapse to null are ok. if (const GlobalVariable *GV = dyn_cast(V)) return !GV->hasExternalWeakLinkage(); // byval arguments are okay. Arguments specifically marked as // dereferenceable are okay too. if (const Argument *A = dyn_cast(V)) { if (A->hasByValAttr()) return true; else if (uint64_t Bytes = A->getDereferenceableBytes()) { Type *Ty = V->getType()->getPointerElementType(); if (Ty->isSized() && DL && DL->getTypeStoreSize(Ty) <= Bytes) return true; } return false; } // Return values from call sites specifically marked as dereferenceable are // also okay. if (ImmutableCallSite CS = V) { if (uint64_t Bytes = CS.getDereferenceableBytes(0)) { Type *Ty = V->getType()->getPointerElementType(); if (Ty->isSized() && DL && DL->getTypeStoreSize(Ty) <= Bytes) return true; } } // For GEPs, determine if the indexing lands within the allocated object. if (const GEPOperator *GEP = dyn_cast(V)) { // Conservatively require that the base pointer be fully dereferenceable. if (!Visited.insert(GEP->getOperand(0)).second) return false; if (!isDereferenceablePointer(GEP->getOperand(0), DL, Visited)) return false; // Check the indices. gep_type_iterator GTI = gep_type_begin(GEP); for (User::const_op_iterator I = GEP->op_begin()+1, E = GEP->op_end(); I != E; ++I) { Value *Index = *I; Type *Ty = *GTI++; // Struct indices can't be out of bounds. if (isa(Ty)) continue; ConstantInt *CI = dyn_cast(Index); if (!CI) return false; // Zero is always ok. if (CI->isZero()) continue; // Check to see that it's within the bounds of an array. ArrayType *ATy = dyn_cast(Ty); if (!ATy) return false; if (CI->getValue().getActiveBits() > 64) return false; if (CI->getZExtValue() >= ATy->getNumElements()) return false; } // Indices check out; this is dereferenceable. return true; } if (const AddrSpaceCastInst *ASC = dyn_cast(V)) return isDereferenceablePointer(ASC->getOperand(0), DL, Visited); // If we don't know, assume the worst. return false; } bool Value::isDereferenceablePointer(const DataLayout *DL) const { // When dereferenceability information is provided by a dereferenceable // attribute, we know exactly how many bytes are dereferenceable. If we can // determine the exact offset to the attributed variable, we can use that // information here. Type *Ty = getType()->getPointerElementType(); if (Ty->isSized() && DL) { APInt Offset(DL->getTypeStoreSizeInBits(getType()), 0); const Value *BV = stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); APInt DerefBytes(Offset.getBitWidth(), 0); if (const Argument *A = dyn_cast(BV)) DerefBytes = A->getDereferenceableBytes(); else if (ImmutableCallSite CS = BV) DerefBytes = CS.getDereferenceableBytes(0); if (DerefBytes.getBoolValue() && Offset.isNonNegative()) { if (DerefBytes.uge(Offset + DL->getTypeStoreSize(Ty))) return true; } } SmallPtrSet Visited; return ::isDereferenceablePointer(this, DL, Visited); } Value *Value::DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) { PHINode *PN = dyn_cast(this); if (PN && PN->getParent() == CurBB) return PN->getIncomingValueForBlock(PredBB); return this; } LLVMContext &Value::getContext() const { return VTy->getContext(); } void Value::reverseUseList() { if (!UseList || !UseList->Next) // No need to reverse 0 or 1 uses. return; Use *Head = UseList; Use *Current = UseList->Next; Head->Next = nullptr; while (Current) { Use *Next = Current->Next; Current->Next = Head; Head->setPrev(&Current->Next); Head = Current; Current = Next; } UseList = Head; Head->setPrev(&UseList); } //===----------------------------------------------------------------------===// // ValueHandleBase Class //===----------------------------------------------------------------------===// void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { assert(List && "Handle list is null?"); // Splice ourselves into the list. Next = *List; *List = this; setPrevPtr(List); if (Next) { Next->setPrevPtr(&Next); assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?"); } } void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { assert(List && "Must insert after existing node"); Next = List->Next; setPrevPtr(&List->Next); List->Next = this; if (Next) Next->setPrevPtr(&Next); } void ValueHandleBase::AddToUseList() { assert(VP.getPointer() && "Null pointer doesn't have a use list!"); LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl; if (VP.getPointer()->HasValueHandle) { // If this value already has a ValueHandle, then it must be in the // ValueHandles map already. ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()]; assert(Entry && "Value doesn't have any handles?"); AddToExistingUseList(&Entry); return; } // Ok, it doesn't have any handles yet, so we must insert it into the // DenseMap. However, doing this insertion could cause the DenseMap to // reallocate itself, which would invalidate all of the PrevP pointers that // point into the old table. Handle this by checking for reallocation and // updating the stale pointers only if needed. DenseMap &Handles = pImpl->ValueHandles; const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); ValueHandleBase *&Entry = Handles[VP.getPointer()]; assert(!Entry && "Value really did already have handles?"); AddToExistingUseList(&Entry); VP.getPointer()->HasValueHandle = true; // If reallocation didn't happen or if this was the first insertion, don't // walk the table. if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || Handles.size() == 1) { return; } // Okay, reallocation did happen. Fix the Prev Pointers. for (DenseMap::iterator I = Handles.begin(), E = Handles.end(); I != E; ++I) { assert(I->second && I->first == I->second->VP.getPointer() && "List invariant broken!"); I->second->setPrevPtr(&I->second); } } void ValueHandleBase::RemoveFromUseList() { assert(VP.getPointer() && VP.getPointer()->HasValueHandle && "Pointer doesn't have a use list!"); // Unlink this from its use list. ValueHandleBase **PrevPtr = getPrevPtr(); assert(*PrevPtr == this && "List invariant broken"); *PrevPtr = Next; if (Next) { assert(Next->getPrevPtr() == &Next && "List invariant broken"); Next->setPrevPtr(PrevPtr); return; } // If the Next pointer was null, then it is possible that this was the last // ValueHandle watching VP. If so, delete its entry from the ValueHandles // map. LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl; DenseMap &Handles = pImpl->ValueHandles; if (Handles.isPointerIntoBucketsArray(PrevPtr)) { Handles.erase(VP.getPointer()); VP.getPointer()->HasValueHandle = false; } } void ValueHandleBase::ValueIsDeleted(Value *V) { assert(V->HasValueHandle && "Should only be called if ValueHandles present"); // Get the linked list base, which is guaranteed to exist since the // HasValueHandle flag is set. LLVMContextImpl *pImpl = V->getContext().pImpl; ValueHandleBase *Entry = pImpl->ValueHandles[V]; assert(Entry && "Value bit set but no entries exist"); // We use a local ValueHandleBase as an iterator so that ValueHandles can add // and remove themselves from the list without breaking our iteration. This // is not really an AssertingVH; we just have to give ValueHandleBase a kind. // Note that we deliberately do not the support the case when dropping a value // handle results in a new value handle being permanently added to the list // (as might occur in theory for CallbackVH's): the new value handle will not // be processed and the checking code will mete out righteous punishment if // the handle is still present once we have finished processing all the other // value handles (it is fine to momentarily add then remove a value handle). for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { Iterator.RemoveFromUseList(); Iterator.AddToExistingUseListAfter(Entry); assert(Entry->Next == &Iterator && "Loop invariant broken."); switch (Entry->getKind()) { case Assert: break; case Tracking: // Mark that this value has been deleted by setting it to an invalid Value // pointer. Entry->operator=(DenseMapInfo::getTombstoneKey()); break; case Weak: // Weak just goes to null, which will unlink it from the list. Entry->operator=(nullptr); break; case Callback: // Forward to the subclass's implementation. static_cast(Entry)->deleted(); break; } } // All callbacks, weak references, and assertingVHs should be dropped by now. if (V->HasValueHandle) { #ifndef NDEBUG // Only in +Asserts mode... dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() << "\n"; if (pImpl->ValueHandles[V]->getKind() == Assert) llvm_unreachable("An asserting value handle still pointed to this" " value!"); #endif llvm_unreachable("All references to V were not removed?"); } } void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); assert(Old != New && "Changing value into itself!"); assert(Old->getType() == New->getType() && "replaceAllUses of value with new value of different type!"); // Get the linked list base, which is guaranteed to exist since the // HasValueHandle flag is set. LLVMContextImpl *pImpl = Old->getContext().pImpl; ValueHandleBase *Entry = pImpl->ValueHandles[Old]; assert(Entry && "Value bit set but no entries exist"); // We use a local ValueHandleBase as an iterator so that // ValueHandles can add and remove themselves from the list without // breaking our iteration. This is not really an AssertingVH; we // just have to give ValueHandleBase some kind. for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { Iterator.RemoveFromUseList(); Iterator.AddToExistingUseListAfter(Entry); assert(Entry->Next == &Iterator && "Loop invariant broken."); switch (Entry->getKind()) { case Assert: // Asserting handle does not follow RAUW implicitly. break; case Tracking: // Tracking goes to new value like a WeakVH. Note that this may make it // something incompatible with its templated type. We don't want to have a // virtual (or inline) interface to handle this though, so instead we make // the TrackingVH accessors guarantee that a client never sees this value. // FALLTHROUGH case Weak: // Weak goes to the new value, which will unlink it from Old's list. Entry->operator=(New); break; case Callback: // Forward to the subclass's implementation. static_cast(Entry)->allUsesReplacedWith(New); break; } } #ifndef NDEBUG // If any new tracking or weak value handles were added while processing the // list, then complain about it now. if (Old->HasValueHandle) for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) switch (Entry->getKind()) { case Tracking: case Weak: dbgs() << "After RAUW from " << *Old->getType() << " %" << Old->getName() << " to " << *New->getType() << " %" << New->getName() << "\n"; llvm_unreachable("A tracking or weak value handle still pointed to the" " old value!\n"); default: break; } #endif } // Pin the vtable to this file. void CallbackVH::anchor() {}