mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-27 05:30:49 +00:00
4c20f52dc1
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304635 91177308-0d34-0410-b5e6-96231b3b80d8
1125 lines
41 KiB
C++
1125 lines
41 KiB
C++
//===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the SelectionDAG::LegalizeVectors method.
|
|
//
|
|
// The vector legalizer looks for vector operations which might need to be
|
|
// scalarized and legalizes them. This is a separate step from Legalize because
|
|
// scalarizing can introduce illegal types. For example, suppose we have an
|
|
// ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
|
|
// on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
|
|
// operation, which introduces nodes with the illegal type i64 which must be
|
|
// expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
|
|
// the operation must be unrolled, which introduces nodes with the illegal
|
|
// type i8 which must be promoted.
|
|
//
|
|
// This does not legalize vector manipulations like ISD::BUILD_VECTOR,
|
|
// or operations that happen to take a vector which are custom-lowered;
|
|
// the legalization for such operations never produces nodes
|
|
// with illegal types, so it's okay to put off legalizing them until
|
|
// SelectionDAG::Legalize runs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class VectorLegalizer {
|
|
SelectionDAG& DAG;
|
|
const TargetLowering &TLI;
|
|
bool Changed; // Keep track of whether anything changed
|
|
|
|
/// For nodes that are of legal width, and that have more than one use, this
|
|
/// map indicates what regularized operand to use. This allows us to avoid
|
|
/// legalizing the same thing more than once.
|
|
SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
|
|
|
|
/// \brief Adds a node to the translation cache.
|
|
void AddLegalizedOperand(SDValue From, SDValue To) {
|
|
LegalizedNodes.insert(std::make_pair(From, To));
|
|
// If someone requests legalization of the new node, return itself.
|
|
if (From != To)
|
|
LegalizedNodes.insert(std::make_pair(To, To));
|
|
}
|
|
|
|
/// \brief Legalizes the given node.
|
|
SDValue LegalizeOp(SDValue Op);
|
|
|
|
/// \brief Assuming the node is legal, "legalize" the results.
|
|
SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
|
|
|
|
/// \brief Implements unrolling a VSETCC.
|
|
SDValue UnrollVSETCC(SDValue Op);
|
|
|
|
/// \brief Implement expand-based legalization of vector operations.
|
|
///
|
|
/// This is just a high-level routine to dispatch to specific code paths for
|
|
/// operations to legalize them.
|
|
SDValue Expand(SDValue Op);
|
|
|
|
/// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
|
|
/// FSUB isn't legal.
|
|
///
|
|
/// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
|
|
/// SINT_TO_FLOAT and SHR on vectors isn't legal.
|
|
SDValue ExpandUINT_TO_FLOAT(SDValue Op);
|
|
|
|
/// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
|
|
SDValue ExpandSEXTINREG(SDValue Op);
|
|
|
|
/// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
|
|
///
|
|
/// Shuffles the low lanes of the operand into place and bitcasts to the proper
|
|
/// type. The contents of the bits in the extended part of each element are
|
|
/// undef.
|
|
SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
|
|
|
|
/// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
|
|
///
|
|
/// Shuffles the low lanes of the operand into place, bitcasts to the proper
|
|
/// type, then shifts left and arithmetic shifts right to introduce a sign
|
|
/// extension.
|
|
SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
|
|
|
|
/// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
|
|
///
|
|
/// Shuffles the low lanes of the operand into place and blends zeros into
|
|
/// the remaining lanes, finally bitcasting to the proper type.
|
|
SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
|
|
|
|
/// \brief Expand bswap of vectors into a shuffle if legal.
|
|
SDValue ExpandBSWAP(SDValue Op);
|
|
|
|
/// \brief Implement vselect in terms of XOR, AND, OR when blend is not
|
|
/// supported by the target.
|
|
SDValue ExpandVSELECT(SDValue Op);
|
|
SDValue ExpandSELECT(SDValue Op);
|
|
SDValue ExpandLoad(SDValue Op);
|
|
SDValue ExpandStore(SDValue Op);
|
|
SDValue ExpandFNEG(SDValue Op);
|
|
SDValue ExpandFSUB(SDValue Op);
|
|
SDValue ExpandBITREVERSE(SDValue Op);
|
|
SDValue ExpandCTLZ(SDValue Op);
|
|
SDValue ExpandCTTZ_ZERO_UNDEF(SDValue Op);
|
|
|
|
/// \brief Implements vector promotion.
|
|
///
|
|
/// This is essentially just bitcasting the operands to a different type and
|
|
/// bitcasting the result back to the original type.
|
|
SDValue Promote(SDValue Op);
|
|
|
|
/// \brief Implements [SU]INT_TO_FP vector promotion.
|
|
///
|
|
/// This is a [zs]ext of the input operand to the next size up.
|
|
SDValue PromoteINT_TO_FP(SDValue Op);
|
|
|
|
/// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
|
|
///
|
|
/// It is promoted to the next size up integer type. The result is then
|
|
/// truncated back to the original type.
|
|
SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
|
|
|
|
public:
|
|
/// \brief Begin legalizer the vector operations in the DAG.
|
|
bool Run();
|
|
VectorLegalizer(SelectionDAG& dag) :
|
|
DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
|
|
};
|
|
|
|
bool VectorLegalizer::Run() {
|
|
// Before we start legalizing vector nodes, check if there are any vectors.
|
|
bool HasVectors = false;
|
|
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
|
|
E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
|
|
// Check if the values of the nodes contain vectors. We don't need to check
|
|
// the operands because we are going to check their values at some point.
|
|
for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
|
|
J != E; ++J)
|
|
HasVectors |= J->isVector();
|
|
|
|
// If we found a vector node we can start the legalization.
|
|
if (HasVectors)
|
|
break;
|
|
}
|
|
|
|
// If this basic block has no vectors then no need to legalize vectors.
|
|
if (!HasVectors)
|
|
return false;
|
|
|
|
// The legalize process is inherently a bottom-up recursive process (users
|
|
// legalize their uses before themselves). Given infinite stack space, we
|
|
// could just start legalizing on the root and traverse the whole graph. In
|
|
// practice however, this causes us to run out of stack space on large basic
|
|
// blocks. To avoid this problem, compute an ordering of the nodes where each
|
|
// node is only legalized after all of its operands are legalized.
|
|
DAG.AssignTopologicalOrder();
|
|
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
|
|
E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
|
|
LegalizeOp(SDValue(&*I, 0));
|
|
|
|
// Finally, it's possible the root changed. Get the new root.
|
|
SDValue OldRoot = DAG.getRoot();
|
|
assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
|
|
DAG.setRoot(LegalizedNodes[OldRoot]);
|
|
|
|
LegalizedNodes.clear();
|
|
|
|
// Remove dead nodes now.
|
|
DAG.RemoveDeadNodes();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
|
|
// Generic legalization: just pass the operand through.
|
|
for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
|
|
AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
|
|
return Result.getValue(Op.getResNo());
|
|
}
|
|
|
|
SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
|
|
// Note that LegalizeOp may be reentered even from single-use nodes, which
|
|
// means that we always must cache transformed nodes.
|
|
DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
|
|
if (I != LegalizedNodes.end()) return I->second;
|
|
|
|
SDNode* Node = Op.getNode();
|
|
|
|
// Legalize the operands
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (const SDValue &Op : Node->op_values())
|
|
Ops.push_back(LegalizeOp(Op));
|
|
|
|
SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
|
|
|
|
bool HasVectorValue = false;
|
|
if (Op.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
|
|
ISD::LoadExtType ExtType = LD->getExtensionType();
|
|
if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
|
|
switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
|
|
LD->getMemoryVT())) {
|
|
default: llvm_unreachable("This action is not supported yet!");
|
|
case TargetLowering::Legal:
|
|
return TranslateLegalizeResults(Op, Result);
|
|
case TargetLowering::Custom:
|
|
if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
|
|
if (Lowered == Result)
|
|
return TranslateLegalizeResults(Op, Lowered);
|
|
Changed = true;
|
|
if (Lowered->getNumValues() != Op->getNumValues()) {
|
|
// This expanded to something other than the load. Assume the
|
|
// lowering code took care of any chain values, and just handle the
|
|
// returned value.
|
|
assert(Result.getValue(1).use_empty() &&
|
|
"There are still live users of the old chain!");
|
|
return LegalizeOp(Lowered);
|
|
}
|
|
return TranslateLegalizeResults(Op, Lowered);
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
case TargetLowering::Expand:
|
|
Changed = true;
|
|
return LegalizeOp(ExpandLoad(Op));
|
|
}
|
|
} else if (Op.getOpcode() == ISD::STORE) {
|
|
StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
|
|
EVT StVT = ST->getMemoryVT();
|
|
MVT ValVT = ST->getValue().getSimpleValueType();
|
|
if (StVT.isVector() && ST->isTruncatingStore())
|
|
switch (TLI.getTruncStoreAction(ValVT, StVT)) {
|
|
default: llvm_unreachable("This action is not supported yet!");
|
|
case TargetLowering::Legal:
|
|
return TranslateLegalizeResults(Op, Result);
|
|
case TargetLowering::Custom: {
|
|
SDValue Lowered = TLI.LowerOperation(Result, DAG);
|
|
Changed = Lowered != Result;
|
|
return TranslateLegalizeResults(Op, Lowered);
|
|
}
|
|
case TargetLowering::Expand:
|
|
Changed = true;
|
|
return LegalizeOp(ExpandStore(Op));
|
|
}
|
|
} else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE)
|
|
HasVectorValue = true;
|
|
|
|
for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
|
|
J != E;
|
|
++J)
|
|
HasVectorValue |= J->isVector();
|
|
if (!HasVectorValue)
|
|
return TranslateLegalizeResults(Op, Result);
|
|
|
|
EVT QueryType;
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
return TranslateLegalizeResults(Op, Result);
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::MUL:
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::SREM:
|
|
case ISD::UREM:
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM:
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
case ISD::FMUL:
|
|
case ISD::FDIV:
|
|
case ISD::FREM:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
case ISD::BSWAP:
|
|
case ISD::BITREVERSE:
|
|
case ISD::CTLZ:
|
|
case ISD::CTTZ:
|
|
case ISD::CTLZ_ZERO_UNDEF:
|
|
case ISD::CTTZ_ZERO_UNDEF:
|
|
case ISD::CTPOP:
|
|
case ISD::SELECT:
|
|
case ISD::VSELECT:
|
|
case ISD::SELECT_CC:
|
|
case ISD::SETCC:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
case ISD::TRUNCATE:
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT:
|
|
case ISD::FNEG:
|
|
case ISD::FABS:
|
|
case ISD::FMINNUM:
|
|
case ISD::FMAXNUM:
|
|
case ISD::FMINNAN:
|
|
case ISD::FMAXNAN:
|
|
case ISD::FCOPYSIGN:
|
|
case ISD::FSQRT:
|
|
case ISD::FSIN:
|
|
case ISD::FCOS:
|
|
case ISD::FPOWI:
|
|
case ISD::FPOW:
|
|
case ISD::FLOG:
|
|
case ISD::FLOG2:
|
|
case ISD::FLOG10:
|
|
case ISD::FEXP:
|
|
case ISD::FEXP2:
|
|
case ISD::FCEIL:
|
|
case ISD::FTRUNC:
|
|
case ISD::FRINT:
|
|
case ISD::FNEARBYINT:
|
|
case ISD::FROUND:
|
|
case ISD::FFLOOR:
|
|
case ISD::FP_ROUND:
|
|
case ISD::FP_EXTEND:
|
|
case ISD::FMA:
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
case ISD::ANY_EXTEND_VECTOR_INREG:
|
|
case ISD::SIGN_EXTEND_VECTOR_INREG:
|
|
case ISD::ZERO_EXTEND_VECTOR_INREG:
|
|
case ISD::SMIN:
|
|
case ISD::SMAX:
|
|
case ISD::UMIN:
|
|
case ISD::UMAX:
|
|
case ISD::SMUL_LOHI:
|
|
case ISD::UMUL_LOHI:
|
|
QueryType = Node->getValueType(0);
|
|
break;
|
|
case ISD::FP_ROUND_INREG:
|
|
QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
|
|
break;
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
QueryType = Node->getOperand(0).getValueType();
|
|
break;
|
|
case ISD::MSCATTER:
|
|
QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType();
|
|
break;
|
|
case ISD::MSTORE:
|
|
QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType();
|
|
break;
|
|
}
|
|
|
|
switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
|
|
default: llvm_unreachable("This action is not supported yet!");
|
|
case TargetLowering::Promote:
|
|
Result = Promote(Op);
|
|
Changed = true;
|
|
break;
|
|
case TargetLowering::Legal:
|
|
break;
|
|
case TargetLowering::Custom: {
|
|
if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
|
|
Result = Tmp1;
|
|
break;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
case TargetLowering::Expand:
|
|
Result = Expand(Op);
|
|
}
|
|
|
|
// Make sure that the generated code is itself legal.
|
|
if (Result != Op) {
|
|
Result = LegalizeOp(Result);
|
|
Changed = true;
|
|
}
|
|
|
|
// Note that LegalizeOp may be reentered even from single-use nodes, which
|
|
// means that we always must cache transformed nodes.
|
|
AddLegalizedOperand(Op, Result);
|
|
return Result;
|
|
}
|
|
|
|
SDValue VectorLegalizer::Promote(SDValue Op) {
|
|
// For a few operations there is a specific concept for promotion based on
|
|
// the operand's type.
|
|
switch (Op.getOpcode()) {
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
// "Promote" the operation by extending the operand.
|
|
return PromoteINT_TO_FP(Op);
|
|
case ISD::FP_TO_UINT:
|
|
case ISD::FP_TO_SINT:
|
|
// Promote the operation by extending the operand.
|
|
return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
|
|
}
|
|
|
|
// There are currently two cases of vector promotion:
|
|
// 1) Bitcasting a vector of integers to a different type to a vector of the
|
|
// same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
|
|
// 2) Extending a vector of floats to a vector of the same number of larger
|
|
// floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert(Op.getNode()->getNumValues() == 1 &&
|
|
"Can't promote a vector with multiple results!");
|
|
MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
|
|
SDLoc dl(Op);
|
|
SmallVector<SDValue, 4> Operands(Op.getNumOperands());
|
|
|
|
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
|
|
if (Op.getOperand(j).getValueType().isVector())
|
|
if (Op.getOperand(j)
|
|
.getValueType()
|
|
.getVectorElementType()
|
|
.isFloatingPoint() &&
|
|
NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
|
|
Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
|
|
else
|
|
Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
|
|
else
|
|
Operands[j] = Op.getOperand(j);
|
|
}
|
|
|
|
Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
|
|
if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
|
|
(VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
|
|
NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
|
|
return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
|
|
else
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Op);
|
|
}
|
|
|
|
SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
|
|
// INT_TO_FP operations may require the input operand be promoted even
|
|
// when the type is otherwise legal.
|
|
EVT VT = Op.getOperand(0).getValueType();
|
|
assert(Op.getNode()->getNumValues() == 1 &&
|
|
"Can't promote a vector with multiple results!");
|
|
|
|
// Normal getTypeToPromoteTo() doesn't work here, as that will promote
|
|
// by widening the vector w/ the same element width and twice the number
|
|
// of elements. We want the other way around, the same number of elements,
|
|
// each twice the width.
|
|
//
|
|
// Increase the bitwidth of the element to the next pow-of-two
|
|
// (which is greater than 8 bits).
|
|
|
|
EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
|
|
assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
|
|
SDLoc dl(Op);
|
|
SmallVector<SDValue, 4> Operands(Op.getNumOperands());
|
|
|
|
unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
|
|
ISD::SIGN_EXTEND;
|
|
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
|
|
if (Op.getOperand(j).getValueType().isVector())
|
|
Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
|
|
else
|
|
Operands[j] = Op.getOperand(j);
|
|
}
|
|
|
|
return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
|
|
}
|
|
|
|
// For FP_TO_INT we promote the result type to a vector type with wider
|
|
// elements and then truncate the result. This is different from the default
|
|
// PromoteVector which uses bitcast to promote thus assumning that the
|
|
// promoted vector type has the same overall size.
|
|
SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
|
|
assert(Op.getNode()->getNumValues() == 1 &&
|
|
"Can't promote a vector with multiple results!");
|
|
EVT VT = Op.getValueType();
|
|
|
|
EVT NewVT;
|
|
unsigned NewOpc;
|
|
while (1) {
|
|
NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
|
|
assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
|
|
if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
|
|
NewOpc = ISD::FP_TO_SINT;
|
|
break;
|
|
}
|
|
if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
|
|
NewOpc = ISD::FP_TO_UINT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
SDLoc loc(Op);
|
|
SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
|
|
return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
|
|
}
|
|
|
|
|
|
SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
|
|
|
|
EVT SrcVT = LD->getMemoryVT();
|
|
EVT SrcEltVT = SrcVT.getScalarType();
|
|
unsigned NumElem = SrcVT.getVectorNumElements();
|
|
|
|
|
|
SDValue NewChain;
|
|
SDValue Value;
|
|
if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
|
|
SDLoc dl(Op);
|
|
|
|
SmallVector<SDValue, 8> Vals;
|
|
SmallVector<SDValue, 8> LoadChains;
|
|
|
|
EVT DstEltVT = LD->getValueType(0).getScalarType();
|
|
SDValue Chain = LD->getChain();
|
|
SDValue BasePTR = LD->getBasePtr();
|
|
ISD::LoadExtType ExtType = LD->getExtensionType();
|
|
|
|
// When elements in a vector is not byte-addressable, we cannot directly
|
|
// load each element by advancing pointer, which could only address bytes.
|
|
// Instead, we load all significant words, mask bits off, and concatenate
|
|
// them to form each element. Finally, they are extended to destination
|
|
// scalar type to build the destination vector.
|
|
EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
|
|
|
|
assert(WideVT.isRound() &&
|
|
"Could not handle the sophisticated case when the widest integer is"
|
|
" not power of 2.");
|
|
assert(WideVT.bitsGE(SrcEltVT) &&
|
|
"Type is not legalized?");
|
|
|
|
unsigned WideBytes = WideVT.getStoreSize();
|
|
unsigned Offset = 0;
|
|
unsigned RemainingBytes = SrcVT.getStoreSize();
|
|
SmallVector<SDValue, 8> LoadVals;
|
|
|
|
while (RemainingBytes > 0) {
|
|
SDValue ScalarLoad;
|
|
unsigned LoadBytes = WideBytes;
|
|
|
|
if (RemainingBytes >= LoadBytes) {
|
|
ScalarLoad =
|
|
DAG.getLoad(WideVT, dl, Chain, BasePTR,
|
|
LD->getPointerInfo().getWithOffset(Offset),
|
|
MinAlign(LD->getAlignment(), Offset),
|
|
LD->getMemOperand()->getFlags(), LD->getAAInfo());
|
|
} else {
|
|
EVT LoadVT = WideVT;
|
|
while (RemainingBytes < LoadBytes) {
|
|
LoadBytes >>= 1; // Reduce the load size by half.
|
|
LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
|
|
}
|
|
ScalarLoad =
|
|
DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
|
|
LD->getPointerInfo().getWithOffset(Offset), LoadVT,
|
|
MinAlign(LD->getAlignment(), Offset),
|
|
LD->getMemOperand()->getFlags(), LD->getAAInfo());
|
|
}
|
|
|
|
RemainingBytes -= LoadBytes;
|
|
Offset += LoadBytes;
|
|
BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
|
|
DAG.getConstant(LoadBytes, dl,
|
|
BasePTR.getValueType()));
|
|
|
|
LoadVals.push_back(ScalarLoad.getValue(0));
|
|
LoadChains.push_back(ScalarLoad.getValue(1));
|
|
}
|
|
|
|
// Extract bits, pack and extend/trunc them into destination type.
|
|
unsigned SrcEltBits = SrcEltVT.getSizeInBits();
|
|
SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
|
|
|
|
unsigned BitOffset = 0;
|
|
unsigned WideIdx = 0;
|
|
unsigned WideBits = WideVT.getSizeInBits();
|
|
|
|
for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
|
|
SDValue Lo, Hi, ShAmt;
|
|
|
|
if (BitOffset < WideBits) {
|
|
ShAmt = DAG.getConstant(
|
|
BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
|
|
Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
|
|
Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
|
|
}
|
|
|
|
BitOffset += SrcEltBits;
|
|
if (BitOffset >= WideBits) {
|
|
WideIdx++;
|
|
BitOffset -= WideBits;
|
|
if (BitOffset > 0) {
|
|
ShAmt = DAG.getConstant(
|
|
SrcEltBits - BitOffset, dl,
|
|
TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
|
|
Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
|
|
Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
|
|
}
|
|
}
|
|
|
|
if (Hi.getNode())
|
|
Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
|
|
|
|
switch (ExtType) {
|
|
default: llvm_unreachable("Unknown extended-load op!");
|
|
case ISD::EXTLOAD:
|
|
Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
|
|
break;
|
|
case ISD::ZEXTLOAD:
|
|
Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
|
|
break;
|
|
case ISD::SEXTLOAD:
|
|
ShAmt =
|
|
DAG.getConstant(WideBits - SrcEltBits, dl,
|
|
TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
|
|
Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
|
|
Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
|
|
Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
|
|
break;
|
|
}
|
|
Vals.push_back(Lo);
|
|
}
|
|
|
|
NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
|
|
Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
|
|
} else {
|
|
SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
|
|
|
|
NewChain = Scalarized.getValue(1);
|
|
Value = Scalarized.getValue(0);
|
|
}
|
|
|
|
AddLegalizedOperand(Op.getValue(0), Value);
|
|
AddLegalizedOperand(Op.getValue(1), NewChain);
|
|
|
|
return (Op.getResNo() ? NewChain : Value);
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandStore(SDValue Op) {
|
|
StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
|
|
|
|
EVT StVT = ST->getMemoryVT();
|
|
EVT MemSclVT = StVT.getScalarType();
|
|
unsigned ScalarSize = MemSclVT.getSizeInBits();
|
|
|
|
// Round odd types to the next pow of two.
|
|
if (!isPowerOf2_32(ScalarSize)) {
|
|
// FIXME: This is completely broken and inconsistent with ExpandLoad
|
|
// handling.
|
|
|
|
// For sub-byte element sizes, this ends up with 0 stride between elements,
|
|
// so the same element just gets re-written to the same location. There seem
|
|
// to be tests explicitly testing for this broken behavior though. tests
|
|
// for this broken behavior.
|
|
|
|
LLVMContext &Ctx = *DAG.getContext();
|
|
|
|
EVT NewMemVT
|
|
= EVT::getVectorVT(Ctx,
|
|
MemSclVT.getIntegerVT(Ctx, NextPowerOf2(ScalarSize)),
|
|
StVT.getVectorNumElements());
|
|
|
|
SDValue NewVectorStore = DAG.getTruncStore(
|
|
ST->getChain(), SDLoc(Op), ST->getValue(), ST->getBasePtr(),
|
|
ST->getPointerInfo(), NewMemVT, ST->getAlignment(),
|
|
ST->getMemOperand()->getFlags(), ST->getAAInfo());
|
|
ST = cast<StoreSDNode>(NewVectorStore.getNode());
|
|
}
|
|
|
|
SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
|
|
AddLegalizedOperand(Op, TF);
|
|
return TF;
|
|
}
|
|
|
|
SDValue VectorLegalizer::Expand(SDValue Op) {
|
|
switch (Op->getOpcode()) {
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
return ExpandSEXTINREG(Op);
|
|
case ISD::ANY_EXTEND_VECTOR_INREG:
|
|
return ExpandANY_EXTEND_VECTOR_INREG(Op);
|
|
case ISD::SIGN_EXTEND_VECTOR_INREG:
|
|
return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
|
|
case ISD::ZERO_EXTEND_VECTOR_INREG:
|
|
return ExpandZERO_EXTEND_VECTOR_INREG(Op);
|
|
case ISD::BSWAP:
|
|
return ExpandBSWAP(Op);
|
|
case ISD::VSELECT:
|
|
return ExpandVSELECT(Op);
|
|
case ISD::SELECT:
|
|
return ExpandSELECT(Op);
|
|
case ISD::UINT_TO_FP:
|
|
return ExpandUINT_TO_FLOAT(Op);
|
|
case ISD::FNEG:
|
|
return ExpandFNEG(Op);
|
|
case ISD::FSUB:
|
|
return ExpandFSUB(Op);
|
|
case ISD::SETCC:
|
|
return UnrollVSETCC(Op);
|
|
case ISD::BITREVERSE:
|
|
return ExpandBITREVERSE(Op);
|
|
case ISD::CTLZ:
|
|
case ISD::CTLZ_ZERO_UNDEF:
|
|
return ExpandCTLZ(Op);
|
|
case ISD::CTTZ_ZERO_UNDEF:
|
|
return ExpandCTTZ_ZERO_UNDEF(Op);
|
|
default:
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
}
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
|
|
// Lower a select instruction where the condition is a scalar and the
|
|
// operands are vectors. Lower this select to VSELECT and implement it
|
|
// using XOR AND OR. The selector bit is broadcasted.
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
|
|
SDValue Mask = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDValue Op2 = Op.getOperand(2);
|
|
|
|
assert(VT.isVector() && !Mask.getValueType().isVector()
|
|
&& Op1.getValueType() == Op2.getValueType() && "Invalid type");
|
|
|
|
// If we can't even use the basic vector operations of
|
|
// AND,OR,XOR, we will have to scalarize the op.
|
|
// Notice that the operation may be 'promoted' which means that it is
|
|
// 'bitcasted' to another type which is handled.
|
|
// Also, we need to be able to construct a splat vector using BUILD_VECTOR.
|
|
if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
// Generate a mask operand.
|
|
EVT MaskTy = VT.changeVectorElementTypeToInteger();
|
|
|
|
// What is the size of each element in the vector mask.
|
|
EVT BitTy = MaskTy.getScalarType();
|
|
|
|
Mask = DAG.getSelect(DL, BitTy, Mask,
|
|
DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
|
|
BitTy),
|
|
DAG.getConstant(0, DL, BitTy));
|
|
|
|
// Broadcast the mask so that the entire vector is all-one or all zero.
|
|
Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
|
|
|
|
// Bitcast the operands to be the same type as the mask.
|
|
// This is needed when we select between FP types because
|
|
// the mask is a vector of integers.
|
|
Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
|
|
Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
|
|
|
|
SDValue AllOnes = DAG.getConstant(
|
|
APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
|
|
SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
|
|
|
|
Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
|
|
Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
|
|
SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
|
|
return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
|
|
EVT VT = Op.getValueType();
|
|
|
|
// Make sure that the SRA and SHL instructions are available.
|
|
if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
SDLoc DL(Op);
|
|
EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
|
|
|
|
unsigned BW = VT.getScalarSizeInBits();
|
|
unsigned OrigBW = OrigTy.getScalarSizeInBits();
|
|
SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
|
|
|
|
Op = Op.getOperand(0);
|
|
Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
|
|
return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
|
|
}
|
|
|
|
// Generically expand a vector anyext in register to a shuffle of the relevant
|
|
// lanes into the appropriate locations, with other lanes left undef.
|
|
SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
int NumElements = VT.getVectorNumElements();
|
|
SDValue Src = Op.getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
int NumSrcElements = SrcVT.getVectorNumElements();
|
|
|
|
// Build a base mask of undef shuffles.
|
|
SmallVector<int, 16> ShuffleMask;
|
|
ShuffleMask.resize(NumSrcElements, -1);
|
|
|
|
// Place the extended lanes into the correct locations.
|
|
int ExtLaneScale = NumSrcElements / NumElements;
|
|
int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
|
|
for (int i = 0; i < NumElements; ++i)
|
|
ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
|
|
|
|
return DAG.getNode(
|
|
ISD::BITCAST, DL, VT,
|
|
DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
SDValue Src = Op.getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
|
|
// First build an any-extend node which can be legalized above when we
|
|
// recurse through it.
|
|
Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
|
|
|
|
// Now we need sign extend. Do this by shifting the elements. Even if these
|
|
// aren't legal operations, they have a better chance of being legalized
|
|
// without full scalarization than the sign extension does.
|
|
unsigned EltWidth = VT.getScalarSizeInBits();
|
|
unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
|
|
SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
|
|
return DAG.getNode(ISD::SRA, DL, VT,
|
|
DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
|
|
ShiftAmount);
|
|
}
|
|
|
|
// Generically expand a vector zext in register to a shuffle of the relevant
|
|
// lanes into the appropriate locations, a blend of zero into the high bits,
|
|
// and a bitcast to the wider element type.
|
|
SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
int NumElements = VT.getVectorNumElements();
|
|
SDValue Src = Op.getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
int NumSrcElements = SrcVT.getVectorNumElements();
|
|
|
|
// Build up a zero vector to blend into this one.
|
|
SDValue Zero = DAG.getConstant(0, DL, SrcVT);
|
|
|
|
// Shuffle the incoming lanes into the correct position, and pull all other
|
|
// lanes from the zero vector.
|
|
SmallVector<int, 16> ShuffleMask;
|
|
ShuffleMask.reserve(NumSrcElements);
|
|
for (int i = 0; i < NumSrcElements; ++i)
|
|
ShuffleMask.push_back(i);
|
|
|
|
int ExtLaneScale = NumSrcElements / NumElements;
|
|
int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
|
|
for (int i = 0; i < NumElements; ++i)
|
|
ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
|
|
|
|
return DAG.getNode(ISD::BITCAST, DL, VT,
|
|
DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
|
|
}
|
|
|
|
static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
|
|
int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
|
|
for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
|
|
for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
|
|
ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
|
|
EVT VT = Op.getValueType();
|
|
|
|
// Generate a byte wise shuffle mask for the BSWAP.
|
|
SmallVector<int, 16> ShuffleMask;
|
|
createBSWAPShuffleMask(VT, ShuffleMask);
|
|
EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
|
|
|
|
// Only emit a shuffle if the mask is legal.
|
|
if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
SDLoc DL(Op);
|
|
Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
|
|
Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, Op);
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
|
|
EVT VT = Op.getValueType();
|
|
|
|
// If we have the scalar operation, it's probably cheaper to unroll it.
|
|
if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
// If the vector element width is a whole number of bytes, test if its legal
|
|
// to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
|
|
// vector. This greatly reduces the number of bit shifts necessary.
|
|
unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
|
|
if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
|
|
SmallVector<int, 16> BSWAPMask;
|
|
createBSWAPShuffleMask(VT, BSWAPMask);
|
|
|
|
EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
|
|
if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
|
|
(TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
|
|
(TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
|
|
TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
|
|
TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
|
|
SDLoc DL(Op);
|
|
Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
|
|
Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
|
|
BSWAPMask);
|
|
Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, Op);
|
|
}
|
|
}
|
|
|
|
// If we have the appropriate vector bit operations, it is better to use them
|
|
// than unrolling and expanding each component.
|
|
if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
|
|
!TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
|
|
!TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
|
|
!TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
// Let LegalizeDAG handle this later.
|
|
return Op;
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
|
|
// Implement VSELECT in terms of XOR, AND, OR
|
|
// on platforms which do not support blend natively.
|
|
SDLoc DL(Op);
|
|
|
|
SDValue Mask = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDValue Op2 = Op.getOperand(2);
|
|
|
|
EVT VT = Mask.getValueType();
|
|
|
|
// If we can't even use the basic vector operations of
|
|
// AND,OR,XOR, we will have to scalarize the op.
|
|
// Notice that the operation may be 'promoted' which means that it is
|
|
// 'bitcasted' to another type which is handled.
|
|
// This operation also isn't safe with AND, OR, XOR when the boolean
|
|
// type is 0/1 as we need an all ones vector constant to mask with.
|
|
// FIXME: Sign extend 1 to all ones if thats legal on the target.
|
|
if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
|
|
TLI.getBooleanContents(Op1.getValueType()) !=
|
|
TargetLowering::ZeroOrNegativeOneBooleanContent)
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
// If the mask and the type are different sizes, unroll the vector op. This
|
|
// can occur when getSetCCResultType returns something that is different in
|
|
// size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
|
|
if (VT.getSizeInBits() != Op1.getValueSizeInBits())
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
// Bitcast the operands to be the same type as the mask.
|
|
// This is needed when we select between FP types because
|
|
// the mask is a vector of integers.
|
|
Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
|
|
Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
|
|
|
|
SDValue AllOnes = DAG.getConstant(
|
|
APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
|
|
SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
|
|
|
|
Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
|
|
Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
|
|
SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
|
|
return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
|
|
EVT VT = Op.getOperand(0).getValueType();
|
|
SDLoc DL(Op);
|
|
|
|
// Make sure that the SINT_TO_FP and SRL instructions are available.
|
|
if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
unsigned BW = VT.getScalarSizeInBits();
|
|
assert((BW == 64 || BW == 32) &&
|
|
"Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
|
|
|
|
SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
|
|
|
|
// Constants to clear the upper part of the word.
|
|
// Notice that we can also use SHL+SHR, but using a constant is slightly
|
|
// faster on x86.
|
|
uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
|
|
SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
|
|
|
|
// Two to the power of half-word-size.
|
|
SDValue TWOHW = DAG.getConstantFP(1 << (BW / 2), DL, Op.getValueType());
|
|
|
|
// Clear upper part of LO, lower HI
|
|
SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
|
|
SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
|
|
|
|
// Convert hi and lo to floats
|
|
// Convert the hi part back to the upper values
|
|
// TODO: Can any fast-math-flags be set on these nodes?
|
|
SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
|
|
fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
|
|
SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
|
|
|
|
// Add the two halves
|
|
return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
|
|
if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
|
|
SDLoc DL(Op);
|
|
SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
|
|
// TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
|
|
return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
|
|
Zero, Op.getOperand(0));
|
|
}
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
|
|
// For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
|
|
// we can defer this to operation legalization where it will be lowered as
|
|
// a+(-b).
|
|
EVT VT = Op.getValueType();
|
|
if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::FADD, VT))
|
|
return Op; // Defer to LegalizeDAG
|
|
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
|
|
EVT VT = Op.getValueType();
|
|
unsigned NumBitsPerElt = VT.getScalarSizeInBits();
|
|
|
|
// If the non-ZERO_UNDEF version is supported we can use that instead.
|
|
if (Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
|
|
TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) {
|
|
SDLoc DL(Op);
|
|
return DAG.getNode(ISD::CTLZ, DL, Op.getValueType(), Op.getOperand(0));
|
|
}
|
|
|
|
// If CTPOP is available we can lower with a CTPOP based method:
|
|
// u16 ctlz(u16 x) {
|
|
// x |= (x >> 1);
|
|
// x |= (x >> 2);
|
|
// x |= (x >> 4);
|
|
// x |= (x >> 8);
|
|
// return ctpop(~x);
|
|
// }
|
|
// Ref: "Hacker's Delight" by Henry Warren
|
|
if (isPowerOf2_32(NumBitsPerElt) &&
|
|
TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
|
|
TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT) &&
|
|
TLI.isOperationLegalOrCustomOrPromote(ISD::XOR, VT)) {
|
|
SDLoc DL(Op);
|
|
SDValue Res = Op.getOperand(0);
|
|
EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
|
|
|
|
for (unsigned i = 1; i != NumBitsPerElt; i *= 2)
|
|
Res = DAG.getNode(
|
|
ISD::OR, DL, VT, Res,
|
|
DAG.getNode(ISD::SRL, DL, VT, Res, DAG.getConstant(i, DL, ShiftTy)));
|
|
|
|
Res = DAG.getNOT(DL, Res, VT);
|
|
return DAG.getNode(ISD::CTPOP, DL, VT, Res);
|
|
}
|
|
|
|
// Otherwise go ahead and unroll.
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandCTTZ_ZERO_UNDEF(SDValue Op) {
|
|
// If the non-ZERO_UNDEF version is supported we can use that instead.
|
|
if (TLI.isOperationLegalOrCustom(ISD::CTTZ, Op.getValueType())) {
|
|
SDLoc DL(Op);
|
|
return DAG.getNode(ISD::CTTZ, DL, Op.getValueType(), Op.getOperand(0));
|
|
}
|
|
|
|
// Otherwise go ahead and unroll.
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
}
|
|
|
|
SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
|
|
EVT VT = Op.getValueType();
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
EVT EltVT = VT.getVectorElementType();
|
|
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
|
|
EVT TmpEltVT = LHS.getValueType().getVectorElementType();
|
|
SDLoc dl(Op);
|
|
SmallVector<SDValue, 8> Ops(NumElems);
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
SDValue LHSElem = DAG.getNode(
|
|
ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
|
|
DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
|
|
SDValue RHSElem = DAG.getNode(
|
|
ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
|
|
DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
|
|
Ops[i] = DAG.getNode(ISD::SETCC, dl,
|
|
TLI.getSetCCResultType(DAG.getDataLayout(),
|
|
*DAG.getContext(), TmpEltVT),
|
|
LHSElem, RHSElem, CC);
|
|
Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
|
|
DAG.getConstant(APInt::getAllOnesValue
|
|
(EltVT.getSizeInBits()), dl, EltVT),
|
|
DAG.getConstant(0, dl, EltVT));
|
|
}
|
|
return DAG.getBuildVector(VT, dl, Ops);
|
|
}
|
|
|
|
}
|
|
|
|
bool SelectionDAG::LegalizeVectors() {
|
|
return VectorLegalizer(*this).Run();
|
|
}
|