mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-12 14:17:59 +00:00
f1e309eb48
PrologEpilog code, and use it to determine whether the asm forces stack alignment or not. gcc consistently does not do this for GCC-style asms; Apple gcc inconsistently sometimes does it for asm blocks. There is no convenient place to put a bit in either the SDNode or the MachineInstr form, so I've added an extra operand to each; unlovely, but it does allow for expansion for more bits, should we need it. PR 5125. Some existing testcases are affected. The operand lists of the SDNode and MachineInstr forms are indexed with awesome mnemonics, like "2"; I may fix this someday, but not now. I'm not making it any worse. If anyone is inspired I think you can find all the right places from this patch. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107506 91177308-0d34-0410-b5e6-96231b3b80d8
1541 lines
53 KiB
C++
1541 lines
53 KiB
C++
//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Methods common to all machine instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Metadata.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Value.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetInstrDesc.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/DebugInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/LeakDetector.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineOperand Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// AddRegOperandToRegInfo - Add this register operand to the specified
|
|
/// MachineRegisterInfo. If it is null, then the next/prev fields should be
|
|
/// explicitly nulled out.
|
|
void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
|
|
assert(isReg() && "Can only add reg operand to use lists");
|
|
|
|
// If the reginfo pointer is null, just explicitly null out or next/prev
|
|
// pointers, to ensure they are not garbage.
|
|
if (RegInfo == 0) {
|
|
Contents.Reg.Prev = 0;
|
|
Contents.Reg.Next = 0;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, add this operand to the head of the registers use/def list.
|
|
MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
|
|
|
|
// For SSA values, we prefer to keep the definition at the start of the list.
|
|
// we do this by skipping over the definition if it is at the head of the
|
|
// list.
|
|
if (*Head && (*Head)->isDef())
|
|
Head = &(*Head)->Contents.Reg.Next;
|
|
|
|
Contents.Reg.Next = *Head;
|
|
if (Contents.Reg.Next) {
|
|
assert(getReg() == Contents.Reg.Next->getReg() &&
|
|
"Different regs on the same list!");
|
|
Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
|
|
}
|
|
|
|
Contents.Reg.Prev = Head;
|
|
*Head = this;
|
|
}
|
|
|
|
/// RemoveRegOperandFromRegInfo - Remove this register operand from the
|
|
/// MachineRegisterInfo it is linked with.
|
|
void MachineOperand::RemoveRegOperandFromRegInfo() {
|
|
assert(isOnRegUseList() && "Reg operand is not on a use list");
|
|
// Unlink this from the doubly linked list of operands.
|
|
MachineOperand *NextOp = Contents.Reg.Next;
|
|
*Contents.Reg.Prev = NextOp;
|
|
if (NextOp) {
|
|
assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
|
|
NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
|
|
}
|
|
Contents.Reg.Prev = 0;
|
|
Contents.Reg.Next = 0;
|
|
}
|
|
|
|
void MachineOperand::setReg(unsigned Reg) {
|
|
if (getReg() == Reg) return; // No change.
|
|
|
|
// Otherwise, we have to change the register. If this operand is embedded
|
|
// into a machine function, we need to update the old and new register's
|
|
// use/def lists.
|
|
if (MachineInstr *MI = getParent())
|
|
if (MachineBasicBlock *MBB = MI->getParent())
|
|
if (MachineFunction *MF = MBB->getParent()) {
|
|
RemoveRegOperandFromRegInfo();
|
|
Contents.Reg.RegNo = Reg;
|
|
AddRegOperandToRegInfo(&MF->getRegInfo());
|
|
return;
|
|
}
|
|
|
|
// Otherwise, just change the register, no problem. :)
|
|
Contents.Reg.RegNo = Reg;
|
|
}
|
|
|
|
void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
|
|
const TargetRegisterInfo &TRI) {
|
|
assert(TargetRegisterInfo::isVirtualRegister(Reg));
|
|
if (SubIdx && getSubReg())
|
|
SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
|
|
setReg(Reg);
|
|
if (SubIdx)
|
|
setSubReg(SubIdx);
|
|
}
|
|
|
|
void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
|
|
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
|
|
if (getSubReg()) {
|
|
Reg = TRI.getSubReg(Reg, getSubReg());
|
|
assert(Reg && "Invalid SubReg for physical register");
|
|
setSubReg(0);
|
|
}
|
|
setReg(Reg);
|
|
}
|
|
|
|
/// ChangeToImmediate - Replace this operand with a new immediate operand of
|
|
/// the specified value. If an operand is known to be an immediate already,
|
|
/// the setImm method should be used.
|
|
void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
|
|
// If this operand is currently a register operand, and if this is in a
|
|
// function, deregister the operand from the register's use/def list.
|
|
if (isReg() && getParent() && getParent()->getParent() &&
|
|
getParent()->getParent()->getParent())
|
|
RemoveRegOperandFromRegInfo();
|
|
|
|
OpKind = MO_Immediate;
|
|
Contents.ImmVal = ImmVal;
|
|
}
|
|
|
|
/// ChangeToRegister - Replace this operand with a new register operand of
|
|
/// the specified value. If an operand is known to be an register already,
|
|
/// the setReg method should be used.
|
|
void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
|
|
bool isKill, bool isDead, bool isUndef,
|
|
bool isDebug) {
|
|
// If this operand is already a register operand, use setReg to update the
|
|
// register's use/def lists.
|
|
if (isReg()) {
|
|
assert(!isEarlyClobber());
|
|
setReg(Reg);
|
|
} else {
|
|
// Otherwise, change this to a register and set the reg#.
|
|
OpKind = MO_Register;
|
|
Contents.Reg.RegNo = Reg;
|
|
|
|
// If this operand is embedded in a function, add the operand to the
|
|
// register's use/def list.
|
|
if (MachineInstr *MI = getParent())
|
|
if (MachineBasicBlock *MBB = MI->getParent())
|
|
if (MachineFunction *MF = MBB->getParent())
|
|
AddRegOperandToRegInfo(&MF->getRegInfo());
|
|
}
|
|
|
|
IsDef = isDef;
|
|
IsImp = isImp;
|
|
IsKill = isKill;
|
|
IsDead = isDead;
|
|
IsUndef = isUndef;
|
|
IsEarlyClobber = false;
|
|
IsDebug = isDebug;
|
|
SubReg = 0;
|
|
}
|
|
|
|
/// isIdenticalTo - Return true if this operand is identical to the specified
|
|
/// operand.
|
|
bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
|
|
if (getType() != Other.getType() ||
|
|
getTargetFlags() != Other.getTargetFlags())
|
|
return false;
|
|
|
|
switch (getType()) {
|
|
default: llvm_unreachable("Unrecognized operand type");
|
|
case MachineOperand::MO_Register:
|
|
return getReg() == Other.getReg() && isDef() == Other.isDef() &&
|
|
getSubReg() == Other.getSubReg();
|
|
case MachineOperand::MO_Immediate:
|
|
return getImm() == Other.getImm();
|
|
case MachineOperand::MO_FPImmediate:
|
|
return getFPImm() == Other.getFPImm();
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
return getMBB() == Other.getMBB();
|
|
case MachineOperand::MO_FrameIndex:
|
|
return getIndex() == Other.getIndex();
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
return getIndex() == Other.getIndex();
|
|
case MachineOperand::MO_GlobalAddress:
|
|
return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
return !strcmp(getSymbolName(), Other.getSymbolName()) &&
|
|
getOffset() == Other.getOffset();
|
|
case MachineOperand::MO_BlockAddress:
|
|
return getBlockAddress() == Other.getBlockAddress();
|
|
case MachineOperand::MO_MCSymbol:
|
|
return getMCSymbol() == Other.getMCSymbol();
|
|
case MachineOperand::MO_Metadata:
|
|
return getMetadata() == Other.getMetadata();
|
|
}
|
|
}
|
|
|
|
/// print - Print the specified machine operand.
|
|
///
|
|
void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
|
|
// If the instruction is embedded into a basic block, we can find the
|
|
// target info for the instruction.
|
|
if (!TM)
|
|
if (const MachineInstr *MI = getParent())
|
|
if (const MachineBasicBlock *MBB = MI->getParent())
|
|
if (const MachineFunction *MF = MBB->getParent())
|
|
TM = &MF->getTarget();
|
|
|
|
switch (getType()) {
|
|
case MachineOperand::MO_Register:
|
|
if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) {
|
|
OS << "%reg" << getReg();
|
|
} else {
|
|
if (TM)
|
|
OS << "%" << TM->getRegisterInfo()->get(getReg()).Name;
|
|
else
|
|
OS << "%physreg" << getReg();
|
|
}
|
|
|
|
if (getSubReg() != 0) {
|
|
if (TM)
|
|
OS << ':' << TM->getRegisterInfo()->getSubRegIndexName(getSubReg());
|
|
else
|
|
OS << ':' << getSubReg();
|
|
}
|
|
|
|
if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
|
|
isEarlyClobber()) {
|
|
OS << '<';
|
|
bool NeedComma = false;
|
|
if (isDef()) {
|
|
if (NeedComma) OS << ',';
|
|
if (isEarlyClobber())
|
|
OS << "earlyclobber,";
|
|
if (isImplicit())
|
|
OS << "imp-";
|
|
OS << "def";
|
|
NeedComma = true;
|
|
} else if (isImplicit()) {
|
|
OS << "imp-use";
|
|
NeedComma = true;
|
|
}
|
|
|
|
if (isKill() || isDead() || isUndef()) {
|
|
if (NeedComma) OS << ',';
|
|
if (isKill()) OS << "kill";
|
|
if (isDead()) OS << "dead";
|
|
if (isUndef()) {
|
|
if (isKill() || isDead())
|
|
OS << ',';
|
|
OS << "undef";
|
|
}
|
|
}
|
|
OS << '>';
|
|
}
|
|
break;
|
|
case MachineOperand::MO_Immediate:
|
|
OS << getImm();
|
|
break;
|
|
case MachineOperand::MO_FPImmediate:
|
|
if (getFPImm()->getType()->isFloatTy())
|
|
OS << getFPImm()->getValueAPF().convertToFloat();
|
|
else
|
|
OS << getFPImm()->getValueAPF().convertToDouble();
|
|
break;
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
OS << "<BB#" << getMBB()->getNumber() << ">";
|
|
break;
|
|
case MachineOperand::MO_FrameIndex:
|
|
OS << "<fi#" << getIndex() << '>';
|
|
break;
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
OS << "<cp#" << getIndex();
|
|
if (getOffset()) OS << "+" << getOffset();
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
OS << "<jt#" << getIndex() << '>';
|
|
break;
|
|
case MachineOperand::MO_GlobalAddress:
|
|
OS << "<ga:";
|
|
WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
|
|
if (getOffset()) OS << "+" << getOffset();
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
OS << "<es:" << getSymbolName();
|
|
if (getOffset()) OS << "+" << getOffset();
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_BlockAddress:
|
|
OS << '<';
|
|
WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_Metadata:
|
|
OS << '<';
|
|
WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_MCSymbol:
|
|
OS << "<MCSym=" << *getMCSymbol() << '>';
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unrecognized operand type");
|
|
}
|
|
|
|
if (unsigned TF = getTargetFlags())
|
|
OS << "[TF=" << TF << ']';
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineMemOperand Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f,
|
|
int64_t o, uint64_t s, unsigned int a)
|
|
: Offset(o), Size(s), V(v),
|
|
Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)) {
|
|
assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
|
|
assert((isLoad() || isStore()) && "Not a load/store!");
|
|
}
|
|
|
|
/// Profile - Gather unique data for the object.
|
|
///
|
|
void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
|
|
ID.AddInteger(Offset);
|
|
ID.AddInteger(Size);
|
|
ID.AddPointer(V);
|
|
ID.AddInteger(Flags);
|
|
}
|
|
|
|
void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
|
|
// The Value and Offset may differ due to CSE. But the flags and size
|
|
// should be the same.
|
|
assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
|
|
assert(MMO->getSize() == getSize() && "Size mismatch!");
|
|
|
|
if (MMO->getBaseAlignment() >= getBaseAlignment()) {
|
|
// Update the alignment value.
|
|
Flags = (Flags & ((1 << MOMaxBits) - 1)) |
|
|
((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
|
|
// Also update the base and offset, because the new alignment may
|
|
// not be applicable with the old ones.
|
|
V = MMO->getValue();
|
|
Offset = MMO->getOffset();
|
|
}
|
|
}
|
|
|
|
/// getAlignment - Return the minimum known alignment in bytes of the
|
|
/// actual memory reference.
|
|
uint64_t MachineMemOperand::getAlignment() const {
|
|
return MinAlign(getBaseAlignment(), getOffset());
|
|
}
|
|
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
|
|
assert((MMO.isLoad() || MMO.isStore()) &&
|
|
"SV has to be a load, store or both.");
|
|
|
|
if (MMO.isVolatile())
|
|
OS << "Volatile ";
|
|
|
|
if (MMO.isLoad())
|
|
OS << "LD";
|
|
if (MMO.isStore())
|
|
OS << "ST";
|
|
OS << MMO.getSize();
|
|
|
|
// Print the address information.
|
|
OS << "[";
|
|
if (!MMO.getValue())
|
|
OS << "<unknown>";
|
|
else
|
|
WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
|
|
|
|
// If the alignment of the memory reference itself differs from the alignment
|
|
// of the base pointer, print the base alignment explicitly, next to the base
|
|
// pointer.
|
|
if (MMO.getBaseAlignment() != MMO.getAlignment())
|
|
OS << "(align=" << MMO.getBaseAlignment() << ")";
|
|
|
|
if (MMO.getOffset() != 0)
|
|
OS << "+" << MMO.getOffset();
|
|
OS << "]";
|
|
|
|
// Print the alignment of the reference.
|
|
if (MMO.getBaseAlignment() != MMO.getAlignment() ||
|
|
MMO.getBaseAlignment() != MMO.getSize())
|
|
OS << "(align=" << MMO.getAlignment() << ")";
|
|
|
|
return OS;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineInstr Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
|
|
/// TID NULL and no operands.
|
|
MachineInstr::MachineInstr()
|
|
: TID(0), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
|
|
Parent(0) {
|
|
// Make sure that we get added to a machine basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
}
|
|
|
|
void MachineInstr::addImplicitDefUseOperands() {
|
|
if (TID->ImplicitDefs)
|
|
for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
|
|
addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
|
|
if (TID->ImplicitUses)
|
|
for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
|
|
addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
|
|
}
|
|
|
|
/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
|
|
/// implicit operands. It reserves space for the number of operands specified by
|
|
/// the TargetInstrDesc.
|
|
MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
|
|
: TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
|
|
MemRefs(0), MemRefsEnd(0), Parent(0) {
|
|
if (!NoImp)
|
|
NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
|
|
Operands.reserve(NumImplicitOps + TID->getNumOperands());
|
|
if (!NoImp)
|
|
addImplicitDefUseOperands();
|
|
// Make sure that we get added to a machine basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
}
|
|
|
|
/// MachineInstr ctor - As above, but with a DebugLoc.
|
|
MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
|
|
bool NoImp)
|
|
: TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
|
|
Parent(0), debugLoc(dl) {
|
|
if (!NoImp)
|
|
NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
|
|
Operands.reserve(NumImplicitOps + TID->getNumOperands());
|
|
if (!NoImp)
|
|
addImplicitDefUseOperands();
|
|
// Make sure that we get added to a machine basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
}
|
|
|
|
/// MachineInstr ctor - Work exactly the same as the ctor two above, except
|
|
/// that the MachineInstr is created and added to the end of the specified
|
|
/// basic block.
|
|
MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
|
|
: TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
|
|
MemRefs(0), MemRefsEnd(0), Parent(0) {
|
|
assert(MBB && "Cannot use inserting ctor with null basic block!");
|
|
NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
|
|
Operands.reserve(NumImplicitOps + TID->getNumOperands());
|
|
addImplicitDefUseOperands();
|
|
// Make sure that we get added to a machine basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
MBB->push_back(this); // Add instruction to end of basic block!
|
|
}
|
|
|
|
/// MachineInstr ctor - As above, but with a DebugLoc.
|
|
///
|
|
MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
|
|
const TargetInstrDesc &tid)
|
|
: TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
|
|
Parent(0), debugLoc(dl) {
|
|
assert(MBB && "Cannot use inserting ctor with null basic block!");
|
|
NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
|
|
Operands.reserve(NumImplicitOps + TID->getNumOperands());
|
|
addImplicitDefUseOperands();
|
|
// Make sure that we get added to a machine basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
MBB->push_back(this); // Add instruction to end of basic block!
|
|
}
|
|
|
|
/// MachineInstr ctor - Copies MachineInstr arg exactly
|
|
///
|
|
MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
|
|
: TID(&MI.getDesc()), NumImplicitOps(0), AsmPrinterFlags(0),
|
|
MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
|
|
Parent(0), debugLoc(MI.getDebugLoc()) {
|
|
Operands.reserve(MI.getNumOperands());
|
|
|
|
// Add operands
|
|
for (unsigned i = 0; i != MI.getNumOperands(); ++i)
|
|
addOperand(MI.getOperand(i));
|
|
NumImplicitOps = MI.NumImplicitOps;
|
|
|
|
// Set parent to null.
|
|
Parent = 0;
|
|
|
|
LeakDetector::addGarbageObject(this);
|
|
}
|
|
|
|
MachineInstr::~MachineInstr() {
|
|
LeakDetector::removeGarbageObject(this);
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
|
|
assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
|
|
"Reg operand def/use list corrupted");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// getRegInfo - If this instruction is embedded into a MachineFunction,
|
|
/// return the MachineRegisterInfo object for the current function, otherwise
|
|
/// return null.
|
|
MachineRegisterInfo *MachineInstr::getRegInfo() {
|
|
if (MachineBasicBlock *MBB = getParent())
|
|
return &MBB->getParent()->getRegInfo();
|
|
return 0;
|
|
}
|
|
|
|
/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
|
|
/// this instruction from their respective use lists. This requires that the
|
|
/// operands already be on their use lists.
|
|
void MachineInstr::RemoveRegOperandsFromUseLists() {
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
if (Operands[i].isReg())
|
|
Operands[i].RemoveRegOperandFromRegInfo();
|
|
}
|
|
}
|
|
|
|
/// AddRegOperandsToUseLists - Add all of the register operands in
|
|
/// this instruction from their respective use lists. This requires that the
|
|
/// operands not be on their use lists yet.
|
|
void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
if (Operands[i].isReg())
|
|
Operands[i].AddRegOperandToRegInfo(&RegInfo);
|
|
}
|
|
}
|
|
|
|
|
|
/// addOperand - Add the specified operand to the instruction. If it is an
|
|
/// implicit operand, it is added to the end of the operand list. If it is
|
|
/// an explicit operand it is added at the end of the explicit operand list
|
|
/// (before the first implicit operand).
|
|
void MachineInstr::addOperand(const MachineOperand &Op) {
|
|
bool isImpReg = Op.isReg() && Op.isImplicit();
|
|
assert((isImpReg || !OperandsComplete()) &&
|
|
"Trying to add an operand to a machine instr that is already done!");
|
|
|
|
MachineRegisterInfo *RegInfo = getRegInfo();
|
|
|
|
// If we are adding the operand to the end of the list, our job is simpler.
|
|
// This is true most of the time, so this is a reasonable optimization.
|
|
if (isImpReg || NumImplicitOps == 0) {
|
|
// We can only do this optimization if we know that the operand list won't
|
|
// reallocate.
|
|
if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
|
|
Operands.push_back(Op);
|
|
|
|
// Set the parent of the operand.
|
|
Operands.back().ParentMI = this;
|
|
|
|
// If the operand is a register, update the operand's use list.
|
|
if (Op.isReg()) {
|
|
Operands.back().AddRegOperandToRegInfo(RegInfo);
|
|
// If the register operand is flagged as early, mark the operand as such
|
|
unsigned OpNo = Operands.size() - 1;
|
|
if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
|
|
Operands[OpNo].setIsEarlyClobber(true);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Otherwise, we have to insert a real operand before any implicit ones.
|
|
unsigned OpNo = Operands.size()-NumImplicitOps;
|
|
|
|
// If this instruction isn't embedded into a function, then we don't need to
|
|
// update any operand lists.
|
|
if (RegInfo == 0) {
|
|
// Simple insertion, no reginfo update needed for other register operands.
|
|
Operands.insert(Operands.begin()+OpNo, Op);
|
|
Operands[OpNo].ParentMI = this;
|
|
|
|
// Do explicitly set the reginfo for this operand though, to ensure the
|
|
// next/prev fields are properly nulled out.
|
|
if (Operands[OpNo].isReg()) {
|
|
Operands[OpNo].AddRegOperandToRegInfo(0);
|
|
// If the register operand is flagged as early, mark the operand as such
|
|
if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
|
|
Operands[OpNo].setIsEarlyClobber(true);
|
|
}
|
|
|
|
} else if (Operands.size()+1 <= Operands.capacity()) {
|
|
// Otherwise, we have to remove register operands from their register use
|
|
// list, add the operand, then add the register operands back to their use
|
|
// list. This also must handle the case when the operand list reallocates
|
|
// to somewhere else.
|
|
|
|
// If insertion of this operand won't cause reallocation of the operand
|
|
// list, just remove the implicit operands, add the operand, then re-add all
|
|
// the rest of the operands.
|
|
for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
|
|
assert(Operands[i].isReg() && "Should only be an implicit reg!");
|
|
Operands[i].RemoveRegOperandFromRegInfo();
|
|
}
|
|
|
|
// Add the operand. If it is a register, add it to the reg list.
|
|
Operands.insert(Operands.begin()+OpNo, Op);
|
|
Operands[OpNo].ParentMI = this;
|
|
|
|
if (Operands[OpNo].isReg()) {
|
|
Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
|
|
// If the register operand is flagged as early, mark the operand as such
|
|
if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
|
|
Operands[OpNo].setIsEarlyClobber(true);
|
|
}
|
|
|
|
// Re-add all the implicit ops.
|
|
for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
|
|
assert(Operands[i].isReg() && "Should only be an implicit reg!");
|
|
Operands[i].AddRegOperandToRegInfo(RegInfo);
|
|
}
|
|
} else {
|
|
// Otherwise, we will be reallocating the operand list. Remove all reg
|
|
// operands from their list, then readd them after the operand list is
|
|
// reallocated.
|
|
RemoveRegOperandsFromUseLists();
|
|
|
|
Operands.insert(Operands.begin()+OpNo, Op);
|
|
Operands[OpNo].ParentMI = this;
|
|
|
|
// Re-add all the operands.
|
|
AddRegOperandsToUseLists(*RegInfo);
|
|
|
|
// If the register operand is flagged as early, mark the operand as such
|
|
if (Operands[OpNo].isReg()
|
|
&& TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
|
|
Operands[OpNo].setIsEarlyClobber(true);
|
|
}
|
|
}
|
|
|
|
/// RemoveOperand - Erase an operand from an instruction, leaving it with one
|
|
/// fewer operand than it started with.
|
|
///
|
|
void MachineInstr::RemoveOperand(unsigned OpNo) {
|
|
assert(OpNo < Operands.size() && "Invalid operand number");
|
|
|
|
// Special case removing the last one.
|
|
if (OpNo == Operands.size()-1) {
|
|
// If needed, remove from the reg def/use list.
|
|
if (Operands.back().isReg() && Operands.back().isOnRegUseList())
|
|
Operands.back().RemoveRegOperandFromRegInfo();
|
|
|
|
Operands.pop_back();
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we are removing an interior operand. If we have reginfo to
|
|
// update, remove all operands that will be shifted down from their reg lists,
|
|
// move everything down, then re-add them.
|
|
MachineRegisterInfo *RegInfo = getRegInfo();
|
|
if (RegInfo) {
|
|
for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
|
|
if (Operands[i].isReg())
|
|
Operands[i].RemoveRegOperandFromRegInfo();
|
|
}
|
|
}
|
|
|
|
Operands.erase(Operands.begin()+OpNo);
|
|
|
|
if (RegInfo) {
|
|
for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
|
|
if (Operands[i].isReg())
|
|
Operands[i].AddRegOperandToRegInfo(RegInfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// addMemOperand - Add a MachineMemOperand to the machine instruction.
|
|
/// This function should be used only occasionally. The setMemRefs function
|
|
/// is the primary method for setting up a MachineInstr's MemRefs list.
|
|
void MachineInstr::addMemOperand(MachineFunction &MF,
|
|
MachineMemOperand *MO) {
|
|
mmo_iterator OldMemRefs = MemRefs;
|
|
mmo_iterator OldMemRefsEnd = MemRefsEnd;
|
|
|
|
size_t NewNum = (MemRefsEnd - MemRefs) + 1;
|
|
mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
|
|
mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
|
|
|
|
std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
|
|
NewMemRefs[NewNum - 1] = MO;
|
|
|
|
MemRefs = NewMemRefs;
|
|
MemRefsEnd = NewMemRefsEnd;
|
|
}
|
|
|
|
bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
|
|
MICheckType Check) const {
|
|
// If opcodes or number of operands are not the same then the two
|
|
// instructions are obviously not identical.
|
|
if (Other->getOpcode() != getOpcode() ||
|
|
Other->getNumOperands() != getNumOperands())
|
|
return false;
|
|
|
|
// Check operands to make sure they match.
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
const MachineOperand &OMO = Other->getOperand(i);
|
|
// Clients may or may not want to ignore defs when testing for equality.
|
|
// For example, machine CSE pass only cares about finding common
|
|
// subexpressions, so it's safe to ignore virtual register defs.
|
|
if (Check != CheckDefs && MO.isReg() && MO.isDef()) {
|
|
if (Check == IgnoreDefs)
|
|
continue;
|
|
// Check == IgnoreVRegDefs
|
|
if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
|
|
TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
|
|
if (MO.getReg() != OMO.getReg())
|
|
return false;
|
|
} else if (!MO.isIdenticalTo(OMO))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// removeFromParent - This method unlinks 'this' from the containing basic
|
|
/// block, and returns it, but does not delete it.
|
|
MachineInstr *MachineInstr::removeFromParent() {
|
|
assert(getParent() && "Not embedded in a basic block!");
|
|
getParent()->remove(this);
|
|
return this;
|
|
}
|
|
|
|
|
|
/// eraseFromParent - This method unlinks 'this' from the containing basic
|
|
/// block, and deletes it.
|
|
void MachineInstr::eraseFromParent() {
|
|
assert(getParent() && "Not embedded in a basic block!");
|
|
getParent()->erase(this);
|
|
}
|
|
|
|
|
|
/// OperandComplete - Return true if it's illegal to add a new operand
|
|
///
|
|
bool MachineInstr::OperandsComplete() const {
|
|
unsigned short NumOperands = TID->getNumOperands();
|
|
if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
|
|
return true; // Broken: we have all the operands of this instruction!
|
|
return false;
|
|
}
|
|
|
|
/// getNumExplicitOperands - Returns the number of non-implicit operands.
|
|
///
|
|
unsigned MachineInstr::getNumExplicitOperands() const {
|
|
unsigned NumOperands = TID->getNumOperands();
|
|
if (!TID->isVariadic())
|
|
return NumOperands;
|
|
|
|
for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isImplicit())
|
|
NumOperands++;
|
|
}
|
|
return NumOperands;
|
|
}
|
|
|
|
|
|
/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
|
|
/// the specific register or -1 if it is not found. It further tightens
|
|
/// the search criteria to a use that kills the register if isKill is true.
|
|
int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
|
|
const TargetRegisterInfo *TRI) const {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
unsigned MOReg = MO.getReg();
|
|
if (!MOReg)
|
|
continue;
|
|
if (MOReg == Reg ||
|
|
(TRI &&
|
|
TargetRegisterInfo::isPhysicalRegister(MOReg) &&
|
|
TargetRegisterInfo::isPhysicalRegister(Reg) &&
|
|
TRI->isSubRegister(MOReg, Reg)))
|
|
if (!isKill || MO.isKill())
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
|
|
/// indicating if this instruction reads or writes Reg. This also considers
|
|
/// partial defines.
|
|
std::pair<bool,bool>
|
|
MachineInstr::readsWritesVirtualRegister(unsigned Reg,
|
|
SmallVectorImpl<unsigned> *Ops) const {
|
|
bool PartDef = false; // Partial redefine.
|
|
bool FullDef = false; // Full define.
|
|
bool Use = false;
|
|
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() != Reg)
|
|
continue;
|
|
if (Ops)
|
|
Ops->push_back(i);
|
|
if (MO.isUse())
|
|
Use |= !MO.isUndef();
|
|
else if (MO.getSubReg())
|
|
PartDef = true;
|
|
else
|
|
FullDef = true;
|
|
}
|
|
// A partial redefine uses Reg unless there is also a full define.
|
|
return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
|
|
}
|
|
|
|
/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
|
|
/// the specified register or -1 if it is not found. If isDead is true, defs
|
|
/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
|
|
/// also checks if there is a def of a super-register.
|
|
int
|
|
MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
|
|
const TargetRegisterInfo *TRI) const {
|
|
bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned MOReg = MO.getReg();
|
|
bool Found = (MOReg == Reg);
|
|
if (!Found && TRI && isPhys &&
|
|
TargetRegisterInfo::isPhysicalRegister(MOReg)) {
|
|
if (Overlap)
|
|
Found = TRI->regsOverlap(MOReg, Reg);
|
|
else
|
|
Found = TRI->isSubRegister(MOReg, Reg);
|
|
}
|
|
if (Found && (!isDead || MO.isDead()))
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/// findFirstPredOperandIdx() - Find the index of the first operand in the
|
|
/// operand list that is used to represent the predicate. It returns -1 if
|
|
/// none is found.
|
|
int MachineInstr::findFirstPredOperandIdx() const {
|
|
const TargetInstrDesc &TID = getDesc();
|
|
if (TID.isPredicable()) {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (TID.OpInfo[i].isPredicate())
|
|
return i;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/// isRegTiedToUseOperand - Given the index of a register def operand,
|
|
/// check if the register def is tied to a source operand, due to either
|
|
/// two-address elimination or inline assembly constraints. Returns the
|
|
/// first tied use operand index by reference is UseOpIdx is not null.
|
|
bool MachineInstr::
|
|
isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
|
|
if (isInlineAsm()) {
|
|
assert(DefOpIdx >= 3);
|
|
const MachineOperand &MO = getOperand(DefOpIdx);
|
|
if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
|
|
return false;
|
|
// Determine the actual operand index that corresponds to this index.
|
|
unsigned DefNo = 0;
|
|
unsigned DefPart = 0;
|
|
for (unsigned i = 2, e = getNumOperands(); i < e; ) {
|
|
const MachineOperand &FMO = getOperand(i);
|
|
// After the normal asm operands there may be additional imp-def regs.
|
|
if (!FMO.isImm())
|
|
return false;
|
|
// Skip over this def.
|
|
unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
|
|
unsigned PrevDef = i + 1;
|
|
i = PrevDef + NumOps;
|
|
if (i > DefOpIdx) {
|
|
DefPart = DefOpIdx - PrevDef;
|
|
break;
|
|
}
|
|
++DefNo;
|
|
}
|
|
for (unsigned i = 2, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &FMO = getOperand(i);
|
|
if (!FMO.isImm())
|
|
continue;
|
|
if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
|
|
continue;
|
|
unsigned Idx;
|
|
if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
|
|
Idx == DefNo) {
|
|
if (UseOpIdx)
|
|
*UseOpIdx = (unsigned)i + 1 + DefPart;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
|
|
const TargetInstrDesc &TID = getDesc();
|
|
for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (MO.isReg() && MO.isUse() &&
|
|
TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
|
|
if (UseOpIdx)
|
|
*UseOpIdx = (unsigned)i;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isRegTiedToDefOperand - Return true if the operand of the specified index
|
|
/// is a register use and it is tied to an def operand. It also returns the def
|
|
/// operand index by reference.
|
|
bool MachineInstr::
|
|
isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
|
|
if (isInlineAsm()) {
|
|
const MachineOperand &MO = getOperand(UseOpIdx);
|
|
if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
|
|
return false;
|
|
|
|
// Find the flag operand corresponding to UseOpIdx
|
|
unsigned FlagIdx, NumOps=0;
|
|
for (FlagIdx = 2; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
|
|
const MachineOperand &UFMO = getOperand(FlagIdx);
|
|
// After the normal asm operands there may be additional imp-def regs.
|
|
if (!UFMO.isImm())
|
|
return false;
|
|
NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
|
|
assert(NumOps < getNumOperands() && "Invalid inline asm flag");
|
|
if (UseOpIdx < FlagIdx+NumOps+1)
|
|
break;
|
|
}
|
|
if (FlagIdx >= UseOpIdx)
|
|
return false;
|
|
const MachineOperand &UFMO = getOperand(FlagIdx);
|
|
unsigned DefNo;
|
|
if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
|
|
if (!DefOpIdx)
|
|
return true;
|
|
|
|
unsigned DefIdx = 2;
|
|
// Remember to adjust the index. First operand is asm string, second is
|
|
// the AlignStack bit, then there is a flag for each.
|
|
while (DefNo) {
|
|
const MachineOperand &FMO = getOperand(DefIdx);
|
|
assert(FMO.isImm());
|
|
// Skip over this def.
|
|
DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
|
|
--DefNo;
|
|
}
|
|
*DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const TargetInstrDesc &TID = getDesc();
|
|
if (UseOpIdx >= TID.getNumOperands())
|
|
return false;
|
|
const MachineOperand &MO = getOperand(UseOpIdx);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
return false;
|
|
int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
|
|
if (DefIdx == -1)
|
|
return false;
|
|
if (DefOpIdx)
|
|
*DefOpIdx = (unsigned)DefIdx;
|
|
return true;
|
|
}
|
|
|
|
/// clearKillInfo - Clears kill flags on all operands.
|
|
///
|
|
void MachineInstr::clearKillInfo() {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (MO.isReg() && MO.isUse())
|
|
MO.setIsKill(false);
|
|
}
|
|
}
|
|
|
|
/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
|
|
///
|
|
void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
|
|
continue;
|
|
for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
|
|
MachineOperand &MOp = getOperand(j);
|
|
if (!MOp.isIdenticalTo(MO))
|
|
continue;
|
|
if (MO.isKill())
|
|
MOp.setIsKill();
|
|
else
|
|
MOp.setIsDead();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// copyPredicates - Copies predicate operand(s) from MI.
|
|
void MachineInstr::copyPredicates(const MachineInstr *MI) {
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (!TID.isPredicable())
|
|
return;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
if (TID.OpInfo[i].isPredicate()) {
|
|
// Predicated operands must be last operands.
|
|
addOperand(MI->getOperand(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
void MachineInstr::substituteRegister(unsigned FromReg,
|
|
unsigned ToReg,
|
|
unsigned SubIdx,
|
|
const TargetRegisterInfo &RegInfo) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
|
|
if (SubIdx)
|
|
ToReg = RegInfo.getSubReg(ToReg, SubIdx);
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() != FromReg)
|
|
continue;
|
|
MO.substPhysReg(ToReg, RegInfo);
|
|
}
|
|
} else {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() != FromReg)
|
|
continue;
|
|
MO.substVirtReg(ToReg, SubIdx, RegInfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// isSafeToMove - Return true if it is safe to move this instruction. If
|
|
/// SawStore is set to true, it means that there is a store (or call) between
|
|
/// the instruction's location and its intended destination.
|
|
bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
|
|
AliasAnalysis *AA,
|
|
bool &SawStore) const {
|
|
// Ignore stuff that we obviously can't move.
|
|
if (TID->mayStore() || TID->isCall()) {
|
|
SawStore = true;
|
|
return false;
|
|
}
|
|
if (TID->isTerminator() || TID->hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
// See if this instruction does a load. If so, we have to guarantee that the
|
|
// loaded value doesn't change between the load and the its intended
|
|
// destination. The check for isInvariantLoad gives the targe the chance to
|
|
// classify the load as always returning a constant, e.g. a constant pool
|
|
// load.
|
|
if (TID->mayLoad() && !isInvariantLoad(AA))
|
|
// Otherwise, this is a real load. If there is a store between the load and
|
|
// end of block, or if the load is volatile, we can't move it.
|
|
return !SawStore && !hasVolatileMemoryRef();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isSafeToReMat - Return true if it's safe to rematerialize the specified
|
|
/// instruction which defined the specified register instead of copying it.
|
|
bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
|
|
AliasAnalysis *AA,
|
|
unsigned DstReg) const {
|
|
bool SawStore = false;
|
|
if (!TII->isTriviallyReMaterializable(this, AA) ||
|
|
!isSafeToMove(TII, AA, SawStore))
|
|
return false;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
// FIXME: For now, do not remat any instruction with register operands.
|
|
// Later on, we can loosen the restriction is the register operands have
|
|
// not been modified between the def and use. Note, this is different from
|
|
// MachineSink because the code is no longer in two-address form (at least
|
|
// partially).
|
|
if (MO.isUse())
|
|
return false;
|
|
else if (!MO.isDead() && MO.getReg() != DstReg)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// hasVolatileMemoryRef - Return true if this instruction may have a
|
|
/// volatile memory reference, or if the information describing the
|
|
/// memory reference is not available. Return false if it is known to
|
|
/// have no volatile memory references.
|
|
bool MachineInstr::hasVolatileMemoryRef() const {
|
|
// An instruction known never to access memory won't have a volatile access.
|
|
if (!TID->mayStore() &&
|
|
!TID->mayLoad() &&
|
|
!TID->isCall() &&
|
|
!TID->hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
// Otherwise, if the instruction has no memory reference information,
|
|
// conservatively assume it wasn't preserved.
|
|
if (memoperands_empty())
|
|
return true;
|
|
|
|
// Check the memory reference information for volatile references.
|
|
for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
|
|
if ((*I)->isVolatile())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isInvariantLoad - Return true if this instruction is loading from a
|
|
/// location whose value is invariant across the function. For example,
|
|
/// loading a value from the constant pool or from the argument area
|
|
/// of a function if it does not change. This should only return true of
|
|
/// *all* loads the instruction does are invariant (if it does multiple loads).
|
|
bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
|
|
// If the instruction doesn't load at all, it isn't an invariant load.
|
|
if (!TID->mayLoad())
|
|
return false;
|
|
|
|
// If the instruction has lost its memoperands, conservatively assume that
|
|
// it may not be an invariant load.
|
|
if (memoperands_empty())
|
|
return false;
|
|
|
|
const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
|
|
|
|
for (mmo_iterator I = memoperands_begin(),
|
|
E = memoperands_end(); I != E; ++I) {
|
|
if ((*I)->isVolatile()) return false;
|
|
if ((*I)->isStore()) return false;
|
|
|
|
if (const Value *V = (*I)->getValue()) {
|
|
// A load from a constant PseudoSourceValue is invariant.
|
|
if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
|
|
if (PSV->isConstant(MFI))
|
|
continue;
|
|
// If we have an AliasAnalysis, ask it whether the memory is constant.
|
|
if (AA && AA->pointsToConstantMemory(V))
|
|
continue;
|
|
}
|
|
|
|
// Otherwise assume conservatively.
|
|
return false;
|
|
}
|
|
|
|
// Everything checks out.
|
|
return true;
|
|
}
|
|
|
|
/// isConstantValuePHI - If the specified instruction is a PHI that always
|
|
/// merges together the same virtual register, return the register, otherwise
|
|
/// return 0.
|
|
unsigned MachineInstr::isConstantValuePHI() const {
|
|
if (!isPHI())
|
|
return 0;
|
|
assert(getNumOperands() >= 3 &&
|
|
"It's illegal to have a PHI without source operands");
|
|
|
|
unsigned Reg = getOperand(1).getReg();
|
|
for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
|
|
if (getOperand(i).getReg() != Reg)
|
|
return 0;
|
|
return Reg;
|
|
}
|
|
|
|
/// allDefsAreDead - Return true if all the defs of this instruction are dead.
|
|
///
|
|
bool MachineInstr::allDefsAreDead() const {
|
|
for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || MO.isUse())
|
|
continue;
|
|
if (!MO.isDead())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void MachineInstr::dump() const {
|
|
dbgs() << " " << *this;
|
|
}
|
|
|
|
static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
|
|
raw_ostream &CommentOS) {
|
|
const LLVMContext &Ctx = MF->getFunction()->getContext();
|
|
if (!DL.isUnknown()) { // Print source line info.
|
|
DIScope Scope(DL.getScope(Ctx));
|
|
// Omit the directory, because it's likely to be long and uninteresting.
|
|
if (Scope.Verify())
|
|
CommentOS << Scope.getFilename();
|
|
else
|
|
CommentOS << "<unknown>";
|
|
CommentOS << ':' << DL.getLine();
|
|
if (DL.getCol() != 0)
|
|
CommentOS << ':' << DL.getCol();
|
|
DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
|
|
if (!InlinedAtDL.isUnknown()) {
|
|
CommentOS << " @[ ";
|
|
printDebugLoc(InlinedAtDL, MF, CommentOS);
|
|
CommentOS << " ]";
|
|
}
|
|
}
|
|
}
|
|
|
|
void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
|
|
// We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
|
|
const MachineFunction *MF = 0;
|
|
if (const MachineBasicBlock *MBB = getParent()) {
|
|
MF = MBB->getParent();
|
|
if (!TM && MF)
|
|
TM = &MF->getTarget();
|
|
}
|
|
|
|
// Print explicitly defined operands on the left of an assignment syntax.
|
|
unsigned StartOp = 0, e = getNumOperands();
|
|
for (; StartOp < e && getOperand(StartOp).isReg() &&
|
|
getOperand(StartOp).isDef() &&
|
|
!getOperand(StartOp).isImplicit();
|
|
++StartOp) {
|
|
if (StartOp != 0) OS << ", ";
|
|
getOperand(StartOp).print(OS, TM);
|
|
}
|
|
|
|
if (StartOp != 0)
|
|
OS << " = ";
|
|
|
|
// Print the opcode name.
|
|
OS << getDesc().getName();
|
|
|
|
// Print the rest of the operands.
|
|
bool OmittedAnyCallClobbers = false;
|
|
bool FirstOp = true;
|
|
for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
|
|
// Omit call-clobbered registers which aren't used anywhere. This makes
|
|
// call instructions much less noisy on targets where calls clobber lots
|
|
// of registers. Don't rely on MO.isDead() because we may be called before
|
|
// LiveVariables is run, or we may be looking at a non-allocatable reg.
|
|
if (MF && getDesc().isCall() &&
|
|
MO.isReg() && MO.isImplicit() && MO.isDef()) {
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
const MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
|
|
bool HasAliasLive = false;
|
|
for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
|
|
unsigned AliasReg = *Alias; ++Alias)
|
|
if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
|
|
HasAliasLive = true;
|
|
break;
|
|
}
|
|
if (!HasAliasLive) {
|
|
OmittedAnyCallClobbers = true;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (FirstOp) FirstOp = false; else OS << ",";
|
|
OS << " ";
|
|
if (i < getDesc().NumOperands) {
|
|
const TargetOperandInfo &TOI = getDesc().OpInfo[i];
|
|
if (TOI.isPredicate())
|
|
OS << "pred:";
|
|
if (TOI.isOptionalDef())
|
|
OS << "opt:";
|
|
}
|
|
if (isDebugValue() && MO.isMetadata()) {
|
|
// Pretty print DBG_VALUE instructions.
|
|
const MDNode *MD = MO.getMetadata();
|
|
if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
|
|
OS << "!\"" << MDS->getString() << '\"';
|
|
else
|
|
MO.print(OS, TM);
|
|
} else
|
|
MO.print(OS, TM);
|
|
}
|
|
|
|
// Briefly indicate whether any call clobbers were omitted.
|
|
if (OmittedAnyCallClobbers) {
|
|
if (!FirstOp) OS << ",";
|
|
OS << " ...";
|
|
}
|
|
|
|
bool HaveSemi = false;
|
|
if (!memoperands_empty()) {
|
|
if (!HaveSemi) OS << ";"; HaveSemi = true;
|
|
|
|
OS << " mem:";
|
|
for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
|
|
i != e; ++i) {
|
|
OS << **i;
|
|
if (next(i) != e)
|
|
OS << " ";
|
|
}
|
|
}
|
|
|
|
if (!debugLoc.isUnknown() && MF) {
|
|
if (!HaveSemi) OS << ";";
|
|
OS << " dbg:";
|
|
printDebugLoc(debugLoc, MF, OS);
|
|
}
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
|
|
const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound) {
|
|
bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
|
|
bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
|
|
bool Found = false;
|
|
SmallVector<unsigned,4> DeadOps;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse() || MO.isUndef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
|
|
if (Reg == IncomingReg) {
|
|
if (!Found) {
|
|
if (MO.isKill())
|
|
// The register is already marked kill.
|
|
return true;
|
|
if (isPhysReg && isRegTiedToDefOperand(i))
|
|
// Two-address uses of physregs must not be marked kill.
|
|
return true;
|
|
MO.setIsKill();
|
|
Found = true;
|
|
}
|
|
} else if (hasAliases && MO.isKill() &&
|
|
TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
// A super-register kill already exists.
|
|
if (RegInfo->isSuperRegister(IncomingReg, Reg))
|
|
return true;
|
|
if (RegInfo->isSubRegister(IncomingReg, Reg))
|
|
DeadOps.push_back(i);
|
|
}
|
|
}
|
|
|
|
// Trim unneeded kill operands.
|
|
while (!DeadOps.empty()) {
|
|
unsigned OpIdx = DeadOps.back();
|
|
if (getOperand(OpIdx).isImplicit())
|
|
RemoveOperand(OpIdx);
|
|
else
|
|
getOperand(OpIdx).setIsKill(false);
|
|
DeadOps.pop_back();
|
|
}
|
|
|
|
// If not found, this means an alias of one of the operands is killed. Add a
|
|
// new implicit operand if required.
|
|
if (!Found && AddIfNotFound) {
|
|
addOperand(MachineOperand::CreateReg(IncomingReg,
|
|
false /*IsDef*/,
|
|
true /*IsImp*/,
|
|
true /*IsKill*/));
|
|
return true;
|
|
}
|
|
return Found;
|
|
}
|
|
|
|
bool MachineInstr::addRegisterDead(unsigned IncomingReg,
|
|
const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound) {
|
|
bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
|
|
bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
|
|
bool Found = false;
|
|
SmallVector<unsigned,4> DeadOps;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
|
|
if (Reg == IncomingReg) {
|
|
if (!Found) {
|
|
if (MO.isDead())
|
|
// The register is already marked dead.
|
|
return true;
|
|
MO.setIsDead();
|
|
Found = true;
|
|
}
|
|
} else if (hasAliases && MO.isDead() &&
|
|
TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
// There exists a super-register that's marked dead.
|
|
if (RegInfo->isSuperRegister(IncomingReg, Reg))
|
|
return true;
|
|
if (RegInfo->getSubRegisters(IncomingReg) &&
|
|
RegInfo->getSuperRegisters(Reg) &&
|
|
RegInfo->isSubRegister(IncomingReg, Reg))
|
|
DeadOps.push_back(i);
|
|
}
|
|
}
|
|
|
|
// Trim unneeded dead operands.
|
|
while (!DeadOps.empty()) {
|
|
unsigned OpIdx = DeadOps.back();
|
|
if (getOperand(OpIdx).isImplicit())
|
|
RemoveOperand(OpIdx);
|
|
else
|
|
getOperand(OpIdx).setIsDead(false);
|
|
DeadOps.pop_back();
|
|
}
|
|
|
|
// If not found, this means an alias of one of the operands is dead. Add a
|
|
// new implicit operand if required.
|
|
if (Found || !AddIfNotFound)
|
|
return Found;
|
|
|
|
addOperand(MachineOperand::CreateReg(IncomingReg,
|
|
true /*IsDef*/,
|
|
true /*IsImp*/,
|
|
false /*IsKill*/,
|
|
true /*IsDead*/));
|
|
return true;
|
|
}
|
|
|
|
void MachineInstr::addRegisterDefined(unsigned IncomingReg,
|
|
const TargetRegisterInfo *RegInfo) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
|
|
MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
|
|
if (MO)
|
|
return;
|
|
} else {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
|
|
MO.getSubReg() == 0)
|
|
return;
|
|
}
|
|
}
|
|
addOperand(MachineOperand::CreateReg(IncomingReg,
|
|
true /*IsDef*/,
|
|
true /*IsImp*/));
|
|
}
|
|
|
|
void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
|
|
const TargetRegisterInfo &TRI) {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
bool Dead = true;
|
|
for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(),
|
|
E = UsedRegs.end(); I != E; ++I)
|
|
if (TRI.regsOverlap(*I, Reg)) {
|
|
Dead = false;
|
|
break;
|
|
}
|
|
// If there are no uses, including partial uses, the def is dead.
|
|
if (Dead) MO.setIsDead();
|
|
}
|
|
}
|
|
|
|
unsigned
|
|
MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
|
|
unsigned Hash = MI->getOpcode() * 37;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
uint64_t Key = (uint64_t)MO.getType() << 32;
|
|
switch (MO.getType()) {
|
|
default: break;
|
|
case MachineOperand::MO_Register:
|
|
if (MO.isDef() && MO.getReg() &&
|
|
TargetRegisterInfo::isVirtualRegister(MO.getReg()))
|
|
continue; // Skip virtual register defs.
|
|
Key |= MO.getReg();
|
|
break;
|
|
case MachineOperand::MO_Immediate:
|
|
Key |= MO.getImm();
|
|
break;
|
|
case MachineOperand::MO_FrameIndex:
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
Key |= MO.getIndex();
|
|
break;
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
|
|
break;
|
|
case MachineOperand::MO_GlobalAddress:
|
|
Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
|
|
break;
|
|
case MachineOperand::MO_BlockAddress:
|
|
Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
|
|
break;
|
|
case MachineOperand::MO_MCSymbol:
|
|
Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
|
|
break;
|
|
}
|
|
Key += ~(Key << 32);
|
|
Key ^= (Key >> 22);
|
|
Key += ~(Key << 13);
|
|
Key ^= (Key >> 8);
|
|
Key += (Key << 3);
|
|
Key ^= (Key >> 15);
|
|
Key += ~(Key << 27);
|
|
Key ^= (Key >> 31);
|
|
Hash = (unsigned)Key + Hash * 37;
|
|
}
|
|
return Hash;
|
|
}
|