llvm/lib/VMCore/Verifier.cpp
Dan Gohman 041e2eb517 IR support for extractvalue and insertvalue instructions. Also, begin
moving toward making structs and arrays first-class types.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51157 91177308-0d34-0410-b5e6-96231b3b80d8
2008-05-15 19:50:34 +00:00

1503 lines
56 KiB
C++

//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
// * Both of a binary operator's parameters are of the same type
// * Verify that the indices of mem access instructions match other operands
// * Verify that arithmetic and other things are only performed on first-class
// types. Verify that shifts & logicals only happen on integrals f.e.
// * All of the constants in a switch statement are of the correct type
// * The code is in valid SSA form
// * It should be illegal to put a label into any other type (like a structure)
// or to return one. [except constant arrays!]
// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
// * PHI nodes must have an entry for each predecessor, with no extras.
// * PHI nodes must be the first thing in a basic block, all grouped together
// * PHI nodes must have at least one entry
// * All basic blocks should only end with terminator insts, not contain them
// * The entry node to a function must not have predecessors
// * All Instructions must be embedded into a basic block
// * Functions cannot take a void-typed parameter
// * Verify that a function's argument list agrees with it's declared type.
// * It is illegal to specify a name for a void value.
// * It is illegal to have a internal global value with no initializer
// * It is illegal to have a ret instruction that returns a value that does not
// agree with the function return value type.
// * Function call argument types match the function prototype
// * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Verifier.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/Streams.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <sstream>
#include <cstdarg>
using namespace llvm;
namespace { // Anonymous namespace for class
struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass {
static char ID; // Pass ID, replacement for typeid
PreVerifier() : FunctionPass((intptr_t)&ID) { }
// Check that the prerequisites for successful DominatorTree construction
// are satisfied.
bool runOnFunction(Function &F) {
bool Broken = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
if (I->empty() || !I->back().isTerminator()) {
cerr << "Basic Block does not have terminator!\n";
WriteAsOperand(*cerr, I, true);
cerr << "\n";
Broken = true;
}
}
if (Broken)
abort();
return false;
}
};
}
char PreVerifier::ID = 0;
static RegisterPass<PreVerifier>
PreVer("preverify", "Preliminary module verification");
static const PassInfo *const PreVerifyID = &PreVer;
namespace {
struct VISIBILITY_HIDDEN
Verifier : public FunctionPass, InstVisitor<Verifier> {
static char ID; // Pass ID, replacement for typeid
bool Broken; // Is this module found to be broken?
bool RealPass; // Are we not being run by a PassManager?
VerifierFailureAction action;
// What to do if verification fails.
Module *Mod; // Module we are verifying right now
DominatorTree *DT; // Dominator Tree, caution can be null!
std::stringstream msgs; // A stringstream to collect messages
/// InstInThisBlock - when verifying a basic block, keep track of all of the
/// instructions we have seen so far. This allows us to do efficient
/// dominance checks for the case when an instruction has an operand that is
/// an instruction in the same block.
SmallPtrSet<Instruction*, 16> InstsInThisBlock;
Verifier()
: FunctionPass((intptr_t)&ID),
Broken(false), RealPass(true), action(AbortProcessAction),
DT(0), msgs( std::ios::app | std::ios::out ) {}
explicit Verifier(VerifierFailureAction ctn)
: FunctionPass((intptr_t)&ID),
Broken(false), RealPass(true), action(ctn), DT(0),
msgs( std::ios::app | std::ios::out ) {}
explicit Verifier(bool AB)
: FunctionPass((intptr_t)&ID),
Broken(false), RealPass(true),
action( AB ? AbortProcessAction : PrintMessageAction), DT(0),
msgs( std::ios::app | std::ios::out ) {}
explicit Verifier(DominatorTree &dt)
: FunctionPass((intptr_t)&ID),
Broken(false), RealPass(false), action(PrintMessageAction),
DT(&dt), msgs( std::ios::app | std::ios::out ) {}
bool doInitialization(Module &M) {
Mod = &M;
verifyTypeSymbolTable(M.getTypeSymbolTable());
// If this is a real pass, in a pass manager, we must abort before
// returning back to the pass manager, or else the pass manager may try to
// run other passes on the broken module.
if (RealPass)
return abortIfBroken();
return false;
}
bool runOnFunction(Function &F) {
// Get dominator information if we are being run by PassManager
if (RealPass) DT = &getAnalysis<DominatorTree>();
Mod = F.getParent();
visit(F);
InstsInThisBlock.clear();
// If this is a real pass, in a pass manager, we must abort before
// returning back to the pass manager, or else the pass manager may try to
// run other passes on the broken module.
if (RealPass)
return abortIfBroken();
return false;
}
bool doFinalization(Module &M) {
// Scan through, checking all of the external function's linkage now...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
visitGlobalValue(*I);
// Check to make sure function prototypes are okay.
if (I->isDeclaration()) visitFunction(*I);
}
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
visitGlobalVariable(*I);
for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
I != E; ++I)
visitGlobalAlias(*I);
// If the module is broken, abort at this time.
return abortIfBroken();
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredID(PreVerifyID);
if (RealPass)
AU.addRequired<DominatorTree>();
}
/// abortIfBroken - If the module is broken and we are supposed to abort on
/// this condition, do so.
///
bool abortIfBroken() {
if (Broken) {
msgs << "Broken module found, ";
switch (action) {
case AbortProcessAction:
msgs << "compilation aborted!\n";
cerr << msgs.str();
abort();
case PrintMessageAction:
msgs << "verification continues.\n";
cerr << msgs.str();
return false;
case ReturnStatusAction:
msgs << "compilation terminated.\n";
return Broken;
}
}
return false;
}
// Verification methods...
void verifyTypeSymbolTable(TypeSymbolTable &ST);
void visitGlobalValue(GlobalValue &GV);
void visitGlobalVariable(GlobalVariable &GV);
void visitGlobalAlias(GlobalAlias &GA);
void visitFunction(Function &F);
void visitBasicBlock(BasicBlock &BB);
void visitTruncInst(TruncInst &I);
void visitZExtInst(ZExtInst &I);
void visitSExtInst(SExtInst &I);
void visitFPTruncInst(FPTruncInst &I);
void visitFPExtInst(FPExtInst &I);
void visitFPToUIInst(FPToUIInst &I);
void visitFPToSIInst(FPToSIInst &I);
void visitUIToFPInst(UIToFPInst &I);
void visitSIToFPInst(SIToFPInst &I);
void visitIntToPtrInst(IntToPtrInst &I);
void visitPtrToIntInst(PtrToIntInst &I);
void visitBitCastInst(BitCastInst &I);
void visitPHINode(PHINode &PN);
void visitBinaryOperator(BinaryOperator &B);
void visitICmpInst(ICmpInst &IC);
void visitFCmpInst(FCmpInst &FC);
void visitExtractElementInst(ExtractElementInst &EI);
void visitInsertElementInst(InsertElementInst &EI);
void visitShuffleVectorInst(ShuffleVectorInst &EI);
void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
void visitCallInst(CallInst &CI);
void visitInvokeInst(InvokeInst &II);
void visitGetElementPtrInst(GetElementPtrInst &GEP);
void visitLoadInst(LoadInst &LI);
void visitStoreInst(StoreInst &SI);
void visitInstruction(Instruction &I);
void visitTerminatorInst(TerminatorInst &I);
void visitReturnInst(ReturnInst &RI);
void visitSwitchInst(SwitchInst &SI);
void visitSelectInst(SelectInst &SI);
void visitUserOp1(Instruction &I);
void visitUserOp2(Instruction &I) { visitUserOp1(I); }
void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
void visitAllocationInst(AllocationInst &AI);
void visitGetResultInst(GetResultInst &GRI);
void VerifyCallSite(CallSite CS);
void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
unsigned Count, ...);
void VerifyAttrs(ParameterAttributes Attrs, const Type *Ty,
bool isReturnValue, const Value *V);
void VerifyFunctionAttrs(const FunctionType *FT, const PAListPtr &Attrs,
const Value *V);
void WriteValue(const Value *V) {
if (!V) return;
if (isa<Instruction>(V)) {
msgs << *V;
} else {
WriteAsOperand(msgs, V, true, Mod);
msgs << "\n";
}
}
void WriteType(const Type* T ) {
if ( !T ) return;
WriteTypeSymbolic(msgs, T, Mod );
}
// CheckFailed - A check failed, so print out the condition and the message
// that failed. This provides a nice place to put a breakpoint if you want
// to see why something is not correct.
void CheckFailed(const std::string &Message,
const Value *V1 = 0, const Value *V2 = 0,
const Value *V3 = 0, const Value *V4 = 0) {
msgs << Message << "\n";
WriteValue(V1);
WriteValue(V2);
WriteValue(V3);
WriteValue(V4);
Broken = true;
}
void CheckFailed( const std::string& Message, const Value* V1,
const Type* T2, const Value* V3 = 0 ) {
msgs << Message << "\n";
WriteValue(V1);
WriteType(T2);
WriteValue(V3);
Broken = true;
}
};
} // End anonymous namespace
char Verifier::ID = 0;
static RegisterPass<Verifier> X("verify", "Module Verifier");
// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
do { if (!(C)) { CheckFailed(M); return; } } while (0)
#define Assert1(C, M, V1) \
do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
#define Assert3(C, M, V1, V2, V3) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
#define Assert4(C, M, V1, V2, V3, V4) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
void Verifier::visitGlobalValue(GlobalValue &GV) {
Assert1(!GV.isDeclaration() ||
GV.hasExternalLinkage() ||
GV.hasDLLImportLinkage() ||
GV.hasExternalWeakLinkage() ||
(isa<GlobalAlias>(GV) &&
(GV.hasInternalLinkage() || GV.hasWeakLinkage())),
"Global is external, but doesn't have external or dllimport or weak linkage!",
&GV);
Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
"Global is marked as dllimport, but not external", &GV);
Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
"Only global variables can have appending linkage!", &GV);
if (GV.hasAppendingLinkage()) {
GlobalVariable &GVar = cast<GlobalVariable>(GV);
Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
"Only global arrays can have appending linkage!", &GV);
}
}
void Verifier::visitGlobalVariable(GlobalVariable &GV) {
if (GV.hasInitializer()) {
Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
"Global variable initializer type does not match global "
"variable type!", &GV);
} else {
Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
GV.hasExternalWeakLinkage(),
"invalid linkage type for global declaration", &GV);
}
visitGlobalValue(GV);
}
void Verifier::visitGlobalAlias(GlobalAlias &GA) {
Assert1(!GA.getName().empty(),
"Alias name cannot be empty!", &GA);
Assert1(GA.hasExternalLinkage() || GA.hasInternalLinkage() ||
GA.hasWeakLinkage(),
"Alias should have external or external weak linkage!", &GA);
Assert1(GA.getAliasee(),
"Aliasee cannot be NULL!", &GA);
Assert1(GA.getType() == GA.getAliasee()->getType(),
"Alias and aliasee types should match!", &GA);
if (!isa<GlobalValue>(GA.getAliasee())) {
const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
Assert1(CE && CE->getOpcode() == Instruction::BitCast &&
isa<GlobalValue>(CE->getOperand(0)),
"Aliasee should be either GlobalValue or bitcast of GlobalValue",
&GA);
}
const GlobalValue* Aliasee = GA.resolveAliasedGlobal();
Assert1(Aliasee,
"Aliasing chain should end with function or global variable", &GA);
visitGlobalValue(GA);
}
void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
}
// VerifyAttrs - Check the given parameter attributes for an argument or return
// value of the specified type. The value V is printed in error messages.
void Verifier::VerifyAttrs(ParameterAttributes Attrs, const Type *Ty,
bool isReturnValue, const Value *V) {
if (Attrs == ParamAttr::None)
return;
if (isReturnValue) {
ParameterAttributes RetI = Attrs & ParamAttr::ParameterOnly;
Assert1(!RetI, "Attribute " + ParamAttr::getAsString(RetI) +
"does not apply to return values!", V);
} else {
ParameterAttributes ParmI = Attrs & ParamAttr::ReturnOnly;
Assert1(!ParmI, "Attribute " + ParamAttr::getAsString(ParmI) +
"only applies to return values!", V);
}
for (unsigned i = 0;
i < array_lengthof(ParamAttr::MutuallyIncompatible); ++i) {
ParameterAttributes MutI = Attrs & ParamAttr::MutuallyIncompatible[i];
Assert1(!(MutI & (MutI - 1)), "Attributes " +
ParamAttr::getAsString(MutI) + "are incompatible!", V);
}
ParameterAttributes TypeI = Attrs & ParamAttr::typeIncompatible(Ty);
Assert1(!TypeI, "Wrong type for attribute " +
ParamAttr::getAsString(TypeI), V);
}
// VerifyFunctionAttrs - Check parameter attributes against a function type.
// The value V is printed in error messages.
void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
const PAListPtr &Attrs,
const Value *V) {
if (Attrs.isEmpty())
return;
bool SawNest = false;
for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
const ParamAttrsWithIndex &Attr = Attrs.getSlot(i);
const Type *Ty;
if (Attr.Index == 0)
Ty = FT->getReturnType();
else if (Attr.Index-1 < FT->getNumParams())
Ty = FT->getParamType(Attr.Index-1);
else
break; // VarArgs attributes, don't verify.
VerifyAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
if (Attr.Attrs & ParamAttr::Nest) {
Assert1(!SawNest, "More than one parameter has attribute nest!", V);
SawNest = true;
}
if (Attr.Attrs & ParamAttr::StructRet)
Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
}
}
// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(Function &F) {
// Check function arguments.
const FunctionType *FT = F.getFunctionType();
unsigned NumArgs = F.arg_size();
Assert2(FT->getNumParams() == NumArgs,
"# formal arguments must match # of arguments for function type!",
&F, FT);
Assert1(F.getReturnType()->isFirstClassType() ||
F.getReturnType() == Type::VoidTy ||
isa<StructType>(F.getReturnType()),
"Functions cannot return aggregate values!", &F);
Assert1(!F.hasStructRetAttr() || F.getReturnType() == Type::VoidTy,
"Invalid struct return type!", &F);
const PAListPtr &Attrs = F.getParamAttrs();
Assert1(Attrs.isEmpty() ||
Attrs.getSlot(Attrs.getNumSlots()-1).Index <= FT->getNumParams(),
"Attributes after last parameter!", &F);
// Check function attributes.
VerifyFunctionAttrs(FT, Attrs, &F);
// Check that this function meets the restrictions on this calling convention.
switch (F.getCallingConv()) {
default:
break;
case CallingConv::C:
break;
case CallingConv::Fast:
case CallingConv::Cold:
case CallingConv::X86_FastCall:
Assert1(!F.isVarArg(),
"Varargs functions must have C calling conventions!", &F);
break;
}
// Check that the argument values match the function type for this function...
unsigned i = 0;
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
I != E; ++I, ++i) {
Assert2(I->getType() == FT->getParamType(i),
"Argument value does not match function argument type!",
I, FT->getParamType(i));
// Make sure no aggregates are passed by value.
Assert1(I->getType()->isFirstClassType(),
"Functions cannot take aggregates as arguments by value!", I);
}
if (F.isDeclaration()) {
Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
F.hasExternalWeakLinkage(),
"invalid linkage type for function declaration", &F);
} else {
// Verify that this function (which has a body) is not named "llvm.*". It
// is not legal to define intrinsics.
if (F.getName().size() >= 5)
Assert1(F.getName().substr(0, 5) != "llvm.",
"llvm intrinsics cannot be defined!", &F);
// Check the entry node
BasicBlock *Entry = &F.getEntryBlock();
Assert1(pred_begin(Entry) == pred_end(Entry),
"Entry block to function must not have predecessors!", Entry);
}
}
// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
InstsInThisBlock.clear();
// Ensure that basic blocks have terminators!
Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
// Check constraints that this basic block imposes on all of the PHI nodes in
// it.
if (isa<PHINode>(BB.front())) {
SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
std::sort(Preds.begin(), Preds.end());
PHINode *PN;
for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
// Ensure that PHI nodes have at least one entry!
Assert1(PN->getNumIncomingValues() != 0,
"PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN);
Assert1(PN->getNumIncomingValues() == Preds.size(),
"PHINode should have one entry for each predecessor of its "
"parent basic block!", PN);
// Get and sort all incoming values in the PHI node...
Values.clear();
Values.reserve(PN->getNumIncomingValues());
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Values.push_back(std::make_pair(PN->getIncomingBlock(i),
PN->getIncomingValue(i)));
std::sort(Values.begin(), Values.end());
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
// Check to make sure that if there is more than one entry for a
// particular basic block in this PHI node, that the incoming values are
// all identical.
//
Assert4(i == 0 || Values[i].first != Values[i-1].first ||
Values[i].second == Values[i-1].second,
"PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first,
Values[i].second, Values[i-1].second);
// Check to make sure that the predecessors and PHI node entries are
// matched up.
Assert3(Values[i].first == Preds[i],
"PHI node entries do not match predecessors!", PN,
Values[i].first, Preds[i]);
}
}
}
}
void Verifier::visitTerminatorInst(TerminatorInst &I) {
// Ensure that terminators only exist at the end of the basic block.
Assert1(&I == I.getParent()->getTerminator(),
"Terminator found in the middle of a basic block!", I.getParent());
visitInstruction(I);
}
void Verifier::visitReturnInst(ReturnInst &RI) {
Function *F = RI.getParent()->getParent();
unsigned N = RI.getNumOperands();
if (F->getReturnType() == Type::VoidTy)
Assert2(N == 0,
"Found return instr that returns void in Function of non-void "
"return type!", &RI, F->getReturnType());
else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
Assert2(STy->getNumElements() == N,
"Incorrect number of return values in ret instruction!",
&RI, F->getReturnType());
for (unsigned i = 0; i != N; ++i)
Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(),
"Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType());
} else {
Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
"Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType());
}
// Check to make sure that the return value has necessary properties for
// terminators...
visitTerminatorInst(RI);
}
void Verifier::visitSwitchInst(SwitchInst &SI) {
// Check to make sure that all of the constants in the switch instruction
// have the same type as the switched-on value.
const Type *SwitchTy = SI.getCondition()->getType();
for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
"Switch constants must all be same type as switch value!", &SI);
visitTerminatorInst(SI);
}
void Verifier::visitSelectInst(SelectInst &SI) {
Assert1(SI.getCondition()->getType() == Type::Int1Ty,
"Select condition type must be bool!", &SI);
Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(),
"Select values must have identical types!", &SI);
Assert1(SI.getTrueValue()->getType() == SI.getType(),
"Select values must have same type as select instruction!", &SI);
visitInstruction(SI);
}
/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
Assert1(0, "User-defined operators should not live outside of a pass!", &I);
}
void Verifier::visitTruncInst(TruncInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
Assert1(SrcTy->isInteger(), "Trunc only operates on integer", &I);
Assert1(DestTy->isInteger(), "Trunc only produces integer", &I);
Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
visitInstruction(I);
}
void Verifier::visitZExtInst(ZExtInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
Assert1(SrcTy->isInteger(), "ZExt only operates on integer", &I);
Assert1(DestTy->isInteger(), "ZExt only produces an integer", &I);
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
visitInstruction(I);
}
void Verifier::visitSExtInst(SExtInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
Assert1(SrcTy->isInteger(), "SExt only operates on integer", &I);
Assert1(DestTy->isInteger(), "SExt only produces an integer", &I);
Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
visitInstruction(I);
}
void Verifier::visitFPTruncInst(FPTruncInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
Assert1(SrcTy->isFloatingPoint(),"FPTrunc only operates on FP", &I);
Assert1(DestTy->isFloatingPoint(),"FPTrunc only produces an FP", &I);
Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
visitInstruction(I);
}
void Verifier::visitFPExtInst(FPExtInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
Assert1(SrcTy->isFloatingPoint(),"FPExt only operates on FP", &I);
Assert1(DestTy->isFloatingPoint(),"FPExt only produces an FP", &I);
Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
visitInstruction(I);
}
void Verifier::visitUIToFPInst(UIToFPInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
bool SrcVec = isa<VectorType>(SrcTy);
bool DstVec = isa<VectorType>(DestTy);
Assert1(SrcVec == DstVec,
"UIToFP source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isIntOrIntVector(),
"UIToFP source must be integer or integer vector", &I);
Assert1(DestTy->isFPOrFPVector(),
"UIToFP result must be FP or FP vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"UIToFP source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitSIToFPInst(SIToFPInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
bool DstVec = DestTy->getTypeID() == Type::VectorTyID;
Assert1(SrcVec == DstVec,
"SIToFP source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isIntOrIntVector(),
"SIToFP source must be integer or integer vector", &I);
Assert1(DestTy->isFPOrFPVector(),
"SIToFP result must be FP or FP vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"SIToFP source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitFPToUIInst(FPToUIInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
bool SrcVec = isa<VectorType>(SrcTy);
bool DstVec = isa<VectorType>(DestTy);
Assert1(SrcVec == DstVec,
"FPToUI source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isFPOrFPVector(), "FPToUI source must be FP or FP vector", &I);
Assert1(DestTy->isIntOrIntVector(),
"FPToUI result must be integer or integer vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"FPToUI source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitFPToSIInst(FPToSIInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
bool SrcVec = isa<VectorType>(SrcTy);
bool DstVec = isa<VectorType>(DestTy);
Assert1(SrcVec == DstVec,
"FPToSI source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isFPOrFPVector(),
"FPToSI source must be FP or FP vector", &I);
Assert1(DestTy->isIntOrIntVector(),
"FPToSI result must be integer or integer vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"FPToSI source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I);
visitInstruction(I);
}
void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I);
Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);
visitInstruction(I);
}
void Verifier::visitBitCastInst(BitCastInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
// BitCast implies a no-op cast of type only. No bits change.
// However, you can't cast pointers to anything but pointers.
Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
"Bitcast requires both operands to be pointer or neither", &I);
Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);
visitInstruction(I);
}
/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
// Ensure that the PHI nodes are all grouped together at the top of the block.
// This can be tested by checking whether the instruction before this is
// either nonexistent (because this is begin()) or is a PHI node. If not,
// then there is some other instruction before a PHI.
Assert2(&PN == &PN.getParent()->front() ||
isa<PHINode>(--BasicBlock::iterator(&PN)),
"PHI nodes not grouped at top of basic block!",
&PN, PN.getParent());
// Check that all of the operands of the PHI node have the same type as the
// result.
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
"PHI node operands are not the same type as the result!", &PN);
// All other PHI node constraints are checked in the visitBasicBlock method.
visitInstruction(PN);
}
void Verifier::VerifyCallSite(CallSite CS) {
Instruction *I = CS.getInstruction();
Assert1(isa<PointerType>(CS.getCalledValue()->getType()),
"Called function must be a pointer!", I);
const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
Assert1(isa<FunctionType>(FPTy->getElementType()),
"Called function is not pointer to function type!", I);
const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
// Verify that the correct number of arguments are being passed
if (FTy->isVarArg())
Assert1(CS.arg_size() >= FTy->getNumParams(),
"Called function requires more parameters than were provided!",I);
else
Assert1(CS.arg_size() == FTy->getNumParams(),
"Incorrect number of arguments passed to called function!", I);
// Verify that all arguments to the call match the function type...
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
"Call parameter type does not match function signature!",
CS.getArgument(i), FTy->getParamType(i), I);
const PAListPtr &Attrs = CS.getParamAttrs();
Assert1(Attrs.isEmpty() ||
Attrs.getSlot(Attrs.getNumSlots()-1).Index <= CS.arg_size(),
"Attributes after last parameter!", I);
// Verify call attributes.
VerifyFunctionAttrs(FTy, Attrs, I);
if (FTy->isVarArg())
// Check attributes on the varargs part.
for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
ParameterAttributes Attr = Attrs.getParamAttrs(Idx);
VerifyAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
ParameterAttributes VArgI = Attr & ParamAttr::VarArgsIncompatible;
Assert1(!VArgI, "Attribute " + ParamAttr::getAsString(VArgI) +
"cannot be used for vararg call arguments!", I);
}
visitInstruction(*I);
}
void Verifier::visitCallInst(CallInst &CI) {
VerifyCallSite(&CI);
if (Function *F = CI.getCalledFunction()) {
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
visitIntrinsicFunctionCall(ID, CI);
}
}
void Verifier::visitInvokeInst(InvokeInst &II) {
VerifyCallSite(&II);
}
/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
"Both operands to a binary operator are not of the same type!", &B);
switch (B.getOpcode()) {
// Check that logical operators are only used with integral operands.
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
Assert1(B.getType()->isInteger() ||
(isa<VectorType>(B.getType()) &&
cast<VectorType>(B.getType())->getElementType()->isInteger()),
"Logical operators only work with integral types!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Logical operators must have same type for operands and result!",
&B);
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
Assert1(B.getType()->isInteger(),
"Shift must return an integer result!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Shift return type must be same as operands!", &B);
/* FALL THROUGH */
default:
// Arithmetic operators only work on integer or fp values
Assert1(B.getType() == B.getOperand(0)->getType(),
"Arithmetic operators must have same type for operands and result!",
&B);
Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() ||
isa<VectorType>(B.getType()),
"Arithmetic operators must have integer, fp, or vector type!", &B);
break;
}
visitInstruction(B);
}
void Verifier::visitICmpInst(ICmpInst& IC) {
// Check that the operands are the same type
const Type* Op0Ty = IC.getOperand(0)->getType();
const Type* Op1Ty = IC.getOperand(1)->getType();
Assert1(Op0Ty == Op1Ty,
"Both operands to ICmp instruction are not of the same type!", &IC);
// Check that the operands are the right type
Assert1(Op0Ty->isInteger() || isa<PointerType>(Op0Ty),
"Invalid operand types for ICmp instruction", &IC);
visitInstruction(IC);
}
void Verifier::visitFCmpInst(FCmpInst& FC) {
// Check that the operands are the same type
const Type* Op0Ty = FC.getOperand(0)->getType();
const Type* Op1Ty = FC.getOperand(1)->getType();
Assert1(Op0Ty == Op1Ty,
"Both operands to FCmp instruction are not of the same type!", &FC);
// Check that the operands are the right type
Assert1(Op0Ty->isFloatingPoint(),
"Invalid operand types for FCmp instruction", &FC);
visitInstruction(FC);
}
void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
EI.getOperand(1)),
"Invalid extractelement operands!", &EI);
visitInstruction(EI);
}
void Verifier::visitInsertElementInst(InsertElementInst &IE) {
Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
IE.getOperand(1),
IE.getOperand(2)),
"Invalid insertelement operands!", &IE);
visitInstruction(IE);
}
void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
SV.getOperand(2)),
"Invalid shufflevector operands!", &SV);
Assert1(SV.getType() == SV.getOperand(0)->getType(),
"Result of shufflevector must match first operand type!", &SV);
// Check to see if Mask is valid.
if (const ConstantVector *MV = dyn_cast<ConstantVector>(SV.getOperand(2))) {
for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
Assert1(isa<ConstantInt>(MV->getOperand(i)) ||
isa<UndefValue>(MV->getOperand(i)),
"Invalid shufflevector shuffle mask!", &SV);
}
} else {
Assert1(isa<UndefValue>(SV.getOperand(2)) ||
isa<ConstantAggregateZero>(SV.getOperand(2)),
"Invalid shufflevector shuffle mask!", &SV);
}
visitInstruction(SV);
}
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
const Type *ElTy =
GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
Idxs.begin(), Idxs.end());
Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
Assert2(isa<PointerType>(GEP.getType()) &&
cast<PointerType>(GEP.getType())->getElementType() == ElTy,
"GEP is not of right type for indices!", &GEP, ElTy);
visitInstruction(GEP);
}
void Verifier::visitLoadInst(LoadInst &LI) {
const Type *ElTy =
cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
Assert2(ElTy == LI.getType(),
"Load result type does not match pointer operand type!", &LI, ElTy);
visitInstruction(LI);
}
void Verifier::visitStoreInst(StoreInst &SI) {
const Type *ElTy =
cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
Assert2(ElTy == SI.getOperand(0)->getType(),
"Stored value type does not match pointer operand type!", &SI, ElTy);
visitInstruction(SI);
}
void Verifier::visitAllocationInst(AllocationInst &AI) {
const PointerType *PTy = AI.getType();
Assert1(PTy->getAddressSpace() == 0,
"Allocation instruction pointer not in the generic address space!",
&AI);
Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
&AI);
visitInstruction(AI);
}
void Verifier::visitGetResultInst(GetResultInst &GRI) {
Assert1(GetResultInst::isValidOperands(GRI.getAggregateValue(),
GRI.getIndex()),
"Invalid GetResultInst operands!", &GRI);
Assert1(isa<CallInst>(GRI.getAggregateValue()) ||
isa<InvokeInst>(GRI.getAggregateValue()) ||
isa<UndefValue>(GRI.getAggregateValue()),
"GetResultInst operand must be a call/invoke/undef!", &GRI);
visitInstruction(GRI);
}
/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
BasicBlock *BB = I.getParent();
Assert1(BB, "Instruction not embedded in basic block!", &I);
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI)
Assert1(*UI != (User*)&I ||
!DT->dominates(&BB->getParent()->getEntryBlock(), BB),
"Only PHI nodes may reference their own value!", &I);
}
// Verify that if this is a terminator that it is at the end of the block.
if (isa<TerminatorInst>(I))
Assert1(BB->getTerminator() == &I, "Terminator not at end of block!", &I);
// Check that void typed values don't have names
Assert1(I.getType() != Type::VoidTy || !I.hasName(),
"Instruction has a name, but provides a void value!", &I);
// Check that the return value of the instruction is either void or a legal
// value type.
Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType()
|| ((isa<CallInst>(I) || isa<InvokeInst>(I))
&& isa<StructType>(I.getType())),
"Instruction returns a non-scalar type!", &I);
// Check that all uses of the instruction, if they are instructions
// themselves, actually have parent basic blocks. If the use is not an
// instruction, it is an error!
for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI) {
Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
*UI);
Instruction *Used = cast<Instruction>(*UI);
Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
" embeded in a basic block!", &I, Used);
}
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
// Check to make sure that only first-class-values are operands to
// instructions.
if (!I.getOperand(i)->getType()->isFirstClassType()) {
if (isa<ReturnInst>(I) || isa<GetResultInst>(I))
Assert1(isa<StructType>(I.getOperand(i)->getType()),
"Invalid ReturnInst operands!", &I);
else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
if (const PointerType *PT = dyn_cast<PointerType>
(I.getOperand(i)->getType())) {
const Type *ETy = PT->getElementType();
Assert1(isa<StructType>(ETy), "Invalid CallInst operands!", &I);
}
else
Assert1(0, "Invalid CallInst operands!", &I);
}
else
Assert1(0, "Instruction operands must be first-class values!", &I);
}
if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
// Check to make sure that the "address of" an intrinsic function is never
// taken.
Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
"Cannot take the address of an intrinsic!", &I);
Assert1(F->getParent() == Mod, "Referencing function in another module!",
&I);
} else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
Assert1(OpBB->getParent() == BB->getParent(),
"Referring to a basic block in another function!", &I);
} else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
Assert1(OpArg->getParent() == BB->getParent(),
"Referring to an argument in another function!", &I);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
Assert1(GV->getParent() == Mod, "Referencing global in another module!",
&I);
} else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
BasicBlock *OpBlock = Op->getParent();
// Check that a definition dominates all of its uses.
if (!isa<PHINode>(I)) {
// Invoke results are only usable in the normal destination, not in the
// exceptional destination.
if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
OpBlock = II->getNormalDest();
Assert2(OpBlock != II->getUnwindDest(),
"No uses of invoke possible due to dominance structure!",
Op, II);
// If the normal successor of an invoke instruction has multiple
// predecessors, then the normal edge from the invoke is critical, so
// the invoke value can only be live if the destination block
// dominates all of it's predecessors (other than the invoke) or if
// the invoke value is only used by a phi in the successor.
if (!OpBlock->getSinglePredecessor() &&
DT->dominates(&BB->getParent()->getEntryBlock(), BB)) {
// The first case we allow is if the use is a PHI operand in the
// normal block, and if that PHI operand corresponds to the invoke's
// block.
bool Bad = true;
if (PHINode *PN = dyn_cast<PHINode>(&I))
if (PN->getParent() == OpBlock &&
PN->getIncomingBlock(i/2) == Op->getParent())
Bad = false;
// If it is used by something non-phi, then the other case is that
// 'OpBlock' dominates all of its predecessors other than the
// invoke. In this case, the invoke value can still be used.
if (Bad) {
Bad = false;
for (pred_iterator PI = pred_begin(OpBlock),
E = pred_end(OpBlock); PI != E; ++PI) {
if (*PI != II->getParent() && !DT->dominates(OpBlock, *PI)) {
Bad = true;
break;
}
}
}
Assert2(!Bad,
"Invoke value defined on critical edge but not dead!", &I,
Op);
}
} else if (OpBlock == BB) {
// If they are in the same basic block, make sure that the definition
// comes before the use.
Assert2(InstsInThisBlock.count(Op) ||
!DT->dominates(&BB->getParent()->getEntryBlock(), BB),
"Instruction does not dominate all uses!", Op, &I);
}
// Definition must dominate use unless use is unreachable!
Assert2(DT->dominates(Op, &I) ||
!DT->dominates(&BB->getParent()->getEntryBlock(), BB),
"Instruction does not dominate all uses!", Op, &I);
} else {
// PHI nodes are more difficult than other nodes because they actually
// "use" the value in the predecessor basic blocks they correspond to.
BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
Assert2(DT->dominates(OpBlock, PredBB) ||
!DT->dominates(&BB->getParent()->getEntryBlock(), PredBB),
"Instruction does not dominate all uses!", Op, &I);
}
} else if (isa<InlineAsm>(I.getOperand(i))) {
Assert1(i == 0 && (isa<CallInst>(I) || isa<InvokeInst>(I)),
"Cannot take the address of an inline asm!", &I);
}
}
InstsInThisBlock.insert(&I);
}
/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
///
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
Function *IF = CI.getCalledFunction();
Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
IF);
#define GET_INTRINSIC_VERIFIER
#include "llvm/Intrinsics.gen"
#undef GET_INTRINSIC_VERIFIER
switch (ID) {
default:
break;
case Intrinsic::gcroot:
case Intrinsic::gcwrite:
case Intrinsic::gcread: {
Type *PtrTy = PointerType::getUnqual(Type::Int8Ty),
*PtrPtrTy = PointerType::getUnqual(PtrTy);
switch (ID) {
default:
break;
case Intrinsic::gcroot:
Assert1(CI.getOperand(1)->getType() == PtrPtrTy,
"Intrinsic parameter #1 is not i8**.", &CI);
Assert1(CI.getOperand(2)->getType() == PtrTy,
"Intrinsic parameter #2 is not i8*.", &CI);
Assert1(isa<AllocaInst>(CI.getOperand(1)->stripPointerCasts()),
"llvm.gcroot parameter #1 must be an alloca.", &CI);
Assert1(isa<Constant>(CI.getOperand(2)),
"llvm.gcroot parameter #2 must be a constant.", &CI);
break;
case Intrinsic::gcwrite:
Assert1(CI.getOperand(1)->getType() == PtrTy,
"Intrinsic parameter #1 is not a i8*.", &CI);
Assert1(CI.getOperand(2)->getType() == PtrTy,
"Intrinsic parameter #2 is not a i8*.", &CI);
Assert1(CI.getOperand(3)->getType() == PtrPtrTy,
"Intrinsic parameter #3 is not a i8**.", &CI);
break;
case Intrinsic::gcread:
Assert1(CI.getOperand(1)->getType() == PtrTy,
"Intrinsic parameter #1 is not a i8*.", &CI);
Assert1(CI.getOperand(2)->getType() == PtrPtrTy,
"Intrinsic parameter #2 is not a i8**.", &CI);
break;
}
Assert1(CI.getParent()->getParent()->hasCollector(),
"Enclosing function does not specify a collector algorithm.",
&CI);
} break;
case Intrinsic::init_trampoline:
Assert1(isa<Function>(CI.getOperand(2)->stripPointerCasts()),
"llvm.init_trampoline parameter #2 must resolve to a function.",
&CI);
break;
}
}
/// VerifyIntrinsicPrototype - TableGen emits calls to this function into
/// Intrinsics.gen. This implements a little state machine that verifies the
/// prototype of intrinsics.
void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID,
Function *F,
unsigned Count, ...) {
va_list VA;
va_start(VA, Count);
const FunctionType *FTy = F->getFunctionType();
// For overloaded intrinsics, the Suffix of the function name must match the
// types of the arguments. This variable keeps track of the expected
// suffix, to be checked at the end.
std::string Suffix;
if (FTy->getNumParams() + FTy->isVarArg() != Count - 1) {
CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
return;
}
// Note that "arg#0" is the return type.
for (unsigned ArgNo = 0; ArgNo < Count; ++ArgNo) {
MVT::ValueType VT = va_arg(VA, MVT::ValueType);
if (VT == MVT::isVoid && ArgNo > 0) {
if (!FTy->isVarArg())
CheckFailed("Intrinsic prototype has no '...'!", F);
break;
}
const Type *Ty;
if (ArgNo == 0)
Ty = FTy->getReturnType();
else
Ty = FTy->getParamType(ArgNo-1);
unsigned NumElts = 0;
const Type *EltTy = Ty;
if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
EltTy = VTy->getElementType();
NumElts = VTy->getNumElements();
}
if ((int)VT < 0) {
int Match = ~VT;
if (Match == 0) {
if (Ty != FTy->getReturnType()) {
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not "
"match return type.", F);
break;
}
} else {
if (Ty != FTy->getParamType(Match-1)) {
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not "
"match parameter %" + utostr(Match-1) + ".", F);
break;
}
}
} else if (VT == MVT::iAny) {
if (!EltTy->isInteger()) {
if (ArgNo == 0)
CheckFailed("Intrinsic result type is not "
"an integer type.", F);
else
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not "
"an integer type.", F);
break;
}
unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
Suffix += ".";
if (EltTy != Ty)
Suffix += "v" + utostr(NumElts);
Suffix += "i" + utostr(GotBits);;
// Check some constraints on various intrinsics.
switch (ID) {
default: break; // Not everything needs to be checked.
case Intrinsic::bswap:
if (GotBits < 16 || GotBits % 16 != 0)
CheckFailed("Intrinsic requires even byte width argument", F);
break;
}
} else if (VT == MVT::fAny) {
if (!EltTy->isFloatingPoint()) {
if (ArgNo == 0)
CheckFailed("Intrinsic result type is not "
"a floating-point type.", F);
else
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not "
"a floating-point type.", F);
break;
}
Suffix += ".";
if (EltTy != Ty)
Suffix += "v" + utostr(NumElts);
Suffix += MVT::getValueTypeString(MVT::getValueType(EltTy));
} else if (VT == MVT::iPTR) {
if (!isa<PointerType>(Ty)) {
if (ArgNo == 0)
CheckFailed("Intrinsic result type is not a "
"pointer and a pointer is required.", F);
else
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not a "
"pointer and a pointer is required.", F);
break;
}
} else if (MVT::isVector(VT)) {
// If this is a vector argument, verify the number and type of elements.
if (MVT::getVectorElementType(VT) != MVT::getValueType(EltTy)) {
CheckFailed("Intrinsic prototype has incorrect vector element type!",
F);
break;
}
if (MVT::getVectorNumElements(VT) != NumElts) {
CheckFailed("Intrinsic prototype has incorrect number of "
"vector elements!",F);
break;
}
} else if (MVT::getTypeForValueType(VT) != EltTy) {
if (ArgNo == 0)
CheckFailed("Intrinsic prototype has incorrect result type!", F);
else
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is wrong!",F);
break;
} else if (EltTy != Ty) {
if (ArgNo == 0)
CheckFailed("Intrinsic result type is vector "
"and a scalar is required.", F);
else
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is vector "
"and a scalar is required.", F);
}
}
va_end(VA);
// If we computed a Suffix then the intrinsic is overloaded and we need to
// make sure that the name of the function is correct. We add the suffix to
// the name of the intrinsic and compare against the given function name. If
// they are not the same, the function name is invalid. This ensures that
// overloading of intrinsics uses a sane and consistent naming convention.
if (!Suffix.empty()) {
std::string Name(Intrinsic::getName(ID));
if (Name + Suffix != F->getName())
CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
F->getName().substr(Name.length()) + "'. It should be '" +
Suffix + "'", F);
}
// Check parameter attributes.
Assert1(F->getParamAttrs() == Intrinsic::getParamAttrs(ID),
"Intrinsic has wrong parameter attributes!", F);
}
//===----------------------------------------------------------------------===//
// Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
return new Verifier(action);
}
// verifyFunction - Create
bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
Function &F = const_cast<Function&>(f);
assert(!F.isDeclaration() && "Cannot verify external functions");
FunctionPassManager FPM(new ExistingModuleProvider(F.getParent()));
Verifier *V = new Verifier(action);
FPM.add(V);
FPM.run(F);
return V->Broken;
}
/// verifyModule - Check a module for errors, printing messages on stderr.
/// Return true if the module is corrupt.
///
bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
std::string *ErrorInfo) {
PassManager PM;
Verifier *V = new Verifier(action);
PM.add(V);
PM.run((Module&)M);
if (ErrorInfo && V->Broken)
*ErrorInfo = V->msgs.str();
return V->Broken;
}
// vim: sw=2